Skip to main content
Fixed syntax highlighting.
Source Link
VE7JRO
  • 2.5k
  • 19
  • 28
  • 31
#include <math.h>
#ifndef MATLAB_MEX_FILE
int counter=0;
#include <Arduino.h>
#include "I2Cdev.h"
#include "I2Cdev.cpp"

#include "helper_3dmath.h"
#include "MPU6050_6Axis_MotionApps20.h"
#include "MPU6050.h" // not necessary if using MotionApps include file
#include "MPU6050.cpp" // not necessary if using MotionApps include file
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
    #include "Wire.cpp"
    #include "utility/twi.h"
    #include "utility/twi.c"
#endif
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;

#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT

#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}
#endif
#include <math.h>
#ifndef MATLAB_MEX_FILE
int counter=0;
#include <Arduino.h>
#include "I2Cdev.h"
#include "I2Cdev.cpp"

#include "helper_3dmath.h"
#include "MPU6050_6Axis_MotionApps20.h"
#include "MPU6050.h" // not necessary if using MotionApps include file
#include "MPU6050.cpp" // not necessary if using MotionApps include file
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
    #include "Wire.cpp"
    #include "utility/twi.h"
    #include "utility/twi.c"
#endif
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;

#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT

#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}
#endif
if (xD[0]!=1){    
#ifndef MATLAB_MEX_FILE
       // join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial2.begin(115200);
//     while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial2.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);
    // verify connection
    Serial2.println(F("Testing device connections..."));
    Serial2.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
   // Serial2.println(F("\nSend any character to begin DMP programming and demo: "));
   // while (Serial2.available() && Serial2.read()); // empty buffer
   // while (!Serial2.available());                 // wait for data
   // while (Serial2.available() && Serial2.read()); // empty buffer again

    // load and configure the DMP
    Serial2.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial2.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);
        // enable Arduino interrupt detection
        Serial2.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();
        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial2.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial2.print(F("DMP Initialization failed (code "));
        Serial2.print(devStatus);
        Serial2.println(F(")"));
    }       
    #endif 

  xD[0]=1;
 }
if (xD[0]!=1){    
#ifndef MATLAB_MEX_FILE
       // join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial2.begin(115200);
//     while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial2.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);
    // verify connection
    Serial2.println(F("Testing device connections..."));
    Serial2.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
   // Serial2.println(F("\nSend any character to begin DMP programming and demo: "));
   // while (Serial2.available() && Serial2.read()); // empty buffer
   // while (!Serial2.available());                 // wait for data
   // while (Serial2.available() && Serial2.read()); // empty buffer again

    // load and configure the DMP
    Serial2.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial2.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);
        // enable Arduino interrupt detection
        Serial2.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();
        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial2.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial2.print(F("DMP Initialization failed (code "));
        Serial2.print(devStatus);
        Serial2.println(F(")"));
    }       
    #endif 

  xD[0]=1;
 }
if (xD[0]==1){
    #ifndef MATLAB_MEX_FILE
// if programming failed, don't try to do anything
    if (!dmpReady) {               
        return;
    }
    
    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();
    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();        
        // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();       
        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;
        
#ifdef OUTPUT_READABLE_QUATERNION
        // display quaternion values in easy matrix form: w x y z
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        // Serial.print("quat\t");
        // Serial.print(q.w);
        // Serial.print("\t");
        // Serial.print(q.x);
        // Serial.print("\t");
        // Serial.print(q.y);
        // Serial.print("\t");
        // Serial.println(q.z);
#endif
        
#ifdef OUTPUT_READABLE_EULER
        // display Euler angles in degrees
//         mpu.dmpGetQuaternion(&q, fifoBuffer);
//         mpu.dmpGetEuler(euler, &q);
//         Serial.print("euler\t");
//         Serial.print(euler[0] * 180/M_PI);
//         Serial.print("\t");
//         Serial.print(euler[1] * 180/M_PI);
//         Serial.print("\t");
//         Serial.println(euler[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_YAWPITCHROLL
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        *roll = ypr[0] * 180/M_PI;
        *pitch = ypr[1] * 180/M_PI;
        *yaw = ypr[2] * 180/M_PI;
        Serial2.print("ypr\t");
        Serial2.print(ypr[0] * 180/M_PI);
        Serial2.print("\t");
        Serial2.print(ypr[1] * 180/M_PI);
        Serial2.print("\t");
        Serial2.println(ypr[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_REALACCEL
        // display real acceleration, adjusted to remove gravity
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        // Serial.print("areal\t");
        // Serial.print(aaReal.x);
        // Serial.print("\t");
        // Serial.print(aaReal.y);
        // Serial.print("\t");
        // Serial.println(aaReal.z);
#endif
        
#ifdef OUTPUT_READABLE_WORLDACCEL
        // display initial world-frame acceleration, adjusted to remove gravity
        // and rotated based on known orientation from quaternion
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
        // Serial.print("aworld\t");
        // Serial.print(aaWorld.x);
        // Serial.print("\t");
        // Serial.print(aaWorld.y);
        // Serial.print("\t");
        // Serial.println(aaWorld.z);
#endif
        
#ifdef OUTPUT_TEAPOT
        // display quaternion values in InvenSense Teapot demo format:
        teapotPacket[2] = fifoBuffer[0];
        teapotPacket[3] = fifoBuffer[1];
        teapotPacket[4] = fifoBuffer[4];
        teapotPacket[5] = fifoBuffer[5];
        teapotPacket[6] = fifoBuffer[8];
        teapotPacket[7] = fifoBuffer[9];
        teapotPacket[8] = fifoBuffer[12];
        teapotPacket[9] = fifoBuffer[13];
        Serial.write(teapotPacket, 14);
        teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif
        
        // blink LED to indicate activity
        // blinkState = !blinkState;
        // digitalWrite(LED_PIN, blinkState);
    }

#endif   
}
if (xD[0]==1){
    #ifndef MATLAB_MEX_FILE
// if programming failed, don't try to do anything
    if (!dmpReady) {               
        return;
    }
    
    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();
    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();        
        // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();       
        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;
        
#ifdef OUTPUT_READABLE_QUATERNION
        // display quaternion values in easy matrix form: w x y z
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        // Serial.print("quat\t");
        // Serial.print(q.w);
        // Serial.print("\t");
        // Serial.print(q.x);
        // Serial.print("\t");
        // Serial.print(q.y);
        // Serial.print("\t");
        // Serial.println(q.z);
#endif
        
#ifdef OUTPUT_READABLE_EULER
        // display Euler angles in degrees
//         mpu.dmpGetQuaternion(&q, fifoBuffer);
//         mpu.dmpGetEuler(euler, &q);
//         Serial.print("euler\t");
//         Serial.print(euler[0] * 180/M_PI);
//         Serial.print("\t");
//         Serial.print(euler[1] * 180/M_PI);
//         Serial.print("\t");
//         Serial.println(euler[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_YAWPITCHROLL
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        *roll = ypr[0] * 180/M_PI;
        *pitch = ypr[1] * 180/M_PI;
        *yaw = ypr[2] * 180/M_PI;
        Serial2.print("ypr\t");
        Serial2.print(ypr[0] * 180/M_PI);
        Serial2.print("\t");
        Serial2.print(ypr[1] * 180/M_PI);
        Serial2.print("\t");
        Serial2.println(ypr[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_REALACCEL
        // display real acceleration, adjusted to remove gravity
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        // Serial.print("areal\t");
        // Serial.print(aaReal.x);
        // Serial.print("\t");
        // Serial.print(aaReal.y);
        // Serial.print("\t");
        // Serial.println(aaReal.z);
#endif
        
#ifdef OUTPUT_READABLE_WORLDACCEL
        // display initial world-frame acceleration, adjusted to remove gravity
        // and rotated based on known orientation from quaternion
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
        // Serial.print("aworld\t");
        // Serial.print(aaWorld.x);
        // Serial.print("\t");
        // Serial.print(aaWorld.y);
        // Serial.print("\t");
        // Serial.println(aaWorld.z);
#endif
        
#ifdef OUTPUT_TEAPOT
        // display quaternion values in InvenSense Teapot demo format:
        teapotPacket[2] = fifoBuffer[0];
        teapotPacket[3] = fifoBuffer[1];
        teapotPacket[4] = fifoBuffer[4];
        teapotPacket[5] = fifoBuffer[5];
        teapotPacket[6] = fifoBuffer[8];
        teapotPacket[7] = fifoBuffer[9];
        teapotPacket[8] = fifoBuffer[12];
        teapotPacket[9] = fifoBuffer[13];
        Serial.write(teapotPacket, 14);
        teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif
        
        // blink LED to indicate activity
        // blinkState = !blinkState;
        // digitalWrite(LED_PIN, blinkState);
    }

#endif   
}
#include <math.h>
#ifndef MATLAB_MEX_FILE
int counter=0;
#include <Arduino.h>
#include "I2Cdev.h"
#include "I2Cdev.cpp"

#include "helper_3dmath.h"
#include "MPU6050_6Axis_MotionApps20.h"
#include "MPU6050.h" // not necessary if using MotionApps include file
#include "MPU6050.cpp" // not necessary if using MotionApps include file
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
    #include "Wire.cpp"
    #include "utility/twi.h"
    #include "utility/twi.c"
#endif
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;

#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT

#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}
#endif
if (xD[0]!=1){    
#ifndef MATLAB_MEX_FILE
       // join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial2.begin(115200);
//     while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial2.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);
    // verify connection
    Serial2.println(F("Testing device connections..."));
    Serial2.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
   // Serial2.println(F("\nSend any character to begin DMP programming and demo: "));
   // while (Serial2.available() && Serial2.read()); // empty buffer
   // while (!Serial2.available());                 // wait for data
   // while (Serial2.available() && Serial2.read()); // empty buffer again

    // load and configure the DMP
    Serial2.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial2.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);
        // enable Arduino interrupt detection
        Serial2.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();
        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial2.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial2.print(F("DMP Initialization failed (code "));
        Serial2.print(devStatus);
        Serial2.println(F(")"));
    }       
    #endif 

  xD[0]=1;
 }
if (xD[0]==1){
    #ifndef MATLAB_MEX_FILE
// if programming failed, don't try to do anything
    if (!dmpReady) {               
        return;
    }
    
    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();
    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();        
        // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();       
        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;
        
#ifdef OUTPUT_READABLE_QUATERNION
        // display quaternion values in easy matrix form: w x y z
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        // Serial.print("quat\t");
        // Serial.print(q.w);
        // Serial.print("\t");
        // Serial.print(q.x);
        // Serial.print("\t");
        // Serial.print(q.y);
        // Serial.print("\t");
        // Serial.println(q.z);
#endif
        
#ifdef OUTPUT_READABLE_EULER
        // display Euler angles in degrees
//         mpu.dmpGetQuaternion(&q, fifoBuffer);
//         mpu.dmpGetEuler(euler, &q);
//         Serial.print("euler\t");
//         Serial.print(euler[0] * 180/M_PI);
//         Serial.print("\t");
//         Serial.print(euler[1] * 180/M_PI);
//         Serial.print("\t");
//         Serial.println(euler[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_YAWPITCHROLL
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        *roll = ypr[0] * 180/M_PI;
        *pitch = ypr[1] * 180/M_PI;
        *yaw = ypr[2] * 180/M_PI;
        Serial2.print("ypr\t");
        Serial2.print(ypr[0] * 180/M_PI);
        Serial2.print("\t");
        Serial2.print(ypr[1] * 180/M_PI);
        Serial2.print("\t");
        Serial2.println(ypr[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_REALACCEL
        // display real acceleration, adjusted to remove gravity
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        // Serial.print("areal\t");
        // Serial.print(aaReal.x);
        // Serial.print("\t");
        // Serial.print(aaReal.y);
        // Serial.print("\t");
        // Serial.println(aaReal.z);
#endif
        
#ifdef OUTPUT_READABLE_WORLDACCEL
        // display initial world-frame acceleration, adjusted to remove gravity
        // and rotated based on known orientation from quaternion
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
        // Serial.print("aworld\t");
        // Serial.print(aaWorld.x);
        // Serial.print("\t");
        // Serial.print(aaWorld.y);
        // Serial.print("\t");
        // Serial.println(aaWorld.z);
#endif
        
#ifdef OUTPUT_TEAPOT
        // display quaternion values in InvenSense Teapot demo format:
        teapotPacket[2] = fifoBuffer[0];
        teapotPacket[3] = fifoBuffer[1];
        teapotPacket[4] = fifoBuffer[4];
        teapotPacket[5] = fifoBuffer[5];
        teapotPacket[6] = fifoBuffer[8];
        teapotPacket[7] = fifoBuffer[9];
        teapotPacket[8] = fifoBuffer[12];
        teapotPacket[9] = fifoBuffer[13];
        Serial.write(teapotPacket, 14);
        teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif
        
        // blink LED to indicate activity
        // blinkState = !blinkState;
        // digitalWrite(LED_PIN, blinkState);
    }

#endif   
}
#include <math.h>
#ifndef MATLAB_MEX_FILE
int counter=0;
#include <Arduino.h>
#include "I2Cdev.h"
#include "I2Cdev.cpp"

#include "helper_3dmath.h"
#include "MPU6050_6Axis_MotionApps20.h"
#include "MPU6050.h" // not necessary if using MotionApps include file
#include "MPU6050.cpp" // not necessary if using MotionApps include file
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
    #include "Wire.cpp"
    #include "utility/twi.h"
    #include "utility/twi.c"
#endif
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;

#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT

#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}
#endif
if (xD[0]!=1){    
#ifndef MATLAB_MEX_FILE
       // join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial2.begin(115200);
//     while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial2.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);
    // verify connection
    Serial2.println(F("Testing device connections..."));
    Serial2.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
   // Serial2.println(F("\nSend any character to begin DMP programming and demo: "));
   // while (Serial2.available() && Serial2.read()); // empty buffer
   // while (!Serial2.available());                 // wait for data
   // while (Serial2.available() && Serial2.read()); // empty buffer again

    // load and configure the DMP
    Serial2.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial2.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);
        // enable Arduino interrupt detection
        Serial2.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();
        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial2.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial2.print(F("DMP Initialization failed (code "));
        Serial2.print(devStatus);
        Serial2.println(F(")"));
    }       
    #endif 

  xD[0]=1;
 }
if (xD[0]==1){
    #ifndef MATLAB_MEX_FILE
// if programming failed, don't try to do anything
    if (!dmpReady) {               
        return;
    }
    
    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();
    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();        
        // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();       
        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;
        
#ifdef OUTPUT_READABLE_QUATERNION
        // display quaternion values in easy matrix form: w x y z
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        // Serial.print("quat\t");
        // Serial.print(q.w);
        // Serial.print("\t");
        // Serial.print(q.x);
        // Serial.print("\t");
        // Serial.print(q.y);
        // Serial.print("\t");
        // Serial.println(q.z);
#endif
        
#ifdef OUTPUT_READABLE_EULER
        // display Euler angles in degrees
//         mpu.dmpGetQuaternion(&q, fifoBuffer);
//         mpu.dmpGetEuler(euler, &q);
//         Serial.print("euler\t");
//         Serial.print(euler[0] * 180/M_PI);
//         Serial.print("\t");
//         Serial.print(euler[1] * 180/M_PI);
//         Serial.print("\t");
//         Serial.println(euler[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_YAWPITCHROLL
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        *roll = ypr[0] * 180/M_PI;
        *pitch = ypr[1] * 180/M_PI;
        *yaw = ypr[2] * 180/M_PI;
        Serial2.print("ypr\t");
        Serial2.print(ypr[0] * 180/M_PI);
        Serial2.print("\t");
        Serial2.print(ypr[1] * 180/M_PI);
        Serial2.print("\t");
        Serial2.println(ypr[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_REALACCEL
        // display real acceleration, adjusted to remove gravity
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        // Serial.print("areal\t");
        // Serial.print(aaReal.x);
        // Serial.print("\t");
        // Serial.print(aaReal.y);
        // Serial.print("\t");
        // Serial.println(aaReal.z);
#endif
        
#ifdef OUTPUT_READABLE_WORLDACCEL
        // display initial world-frame acceleration, adjusted to remove gravity
        // and rotated based on known orientation from quaternion
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
        // Serial.print("aworld\t");
        // Serial.print(aaWorld.x);
        // Serial.print("\t");
        // Serial.print(aaWorld.y);
        // Serial.print("\t");
        // Serial.println(aaWorld.z);
#endif
        
#ifdef OUTPUT_TEAPOT
        // display quaternion values in InvenSense Teapot demo format:
        teapotPacket[2] = fifoBuffer[0];
        teapotPacket[3] = fifoBuffer[1];
        teapotPacket[4] = fifoBuffer[4];
        teapotPacket[5] = fifoBuffer[5];
        teapotPacket[6] = fifoBuffer[8];
        teapotPacket[7] = fifoBuffer[9];
        teapotPacket[8] = fifoBuffer[12];
        teapotPacket[9] = fifoBuffer[13];
        Serial.write(teapotPacket, 14);
        teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif
        
        // blink LED to indicate activity
        // blinkState = !blinkState;
        // digitalWrite(LED_PIN, blinkState);
    }

#endif   
}
Source Link

Interfacing MPU6050 with Arduino through Simulink S-function

I am interfacing MPU6050 with Arduino using Simulink S-function builder. I'm implementing MPU6050_DMP6 code in Simulink s-function builder by following this video. By following this tutorial I implemented the S-function as: I set sample time 0.05 in s-function builder block and number of discrete state=1 and sample mode = 1. in the libraries tab I put the following code:

#include <math.h>
#ifndef MATLAB_MEX_FILE
int counter=0;
#include <Arduino.h>
#include "I2Cdev.h"
#include "I2Cdev.cpp"

#include "helper_3dmath.h"
#include "MPU6050_6Axis_MotionApps20.h"
#include "MPU6050.h" // not necessary if using MotionApps include file
#include "MPU6050.cpp" // not necessary if using MotionApps include file
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
    #include "Wire.cpp"
    #include "utility/twi.h"
    #include "utility/twi.c"
#endif
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;

#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT

#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}
#endif

in the discrete update tab I have implemented following code:

if (xD[0]!=1){    
#ifndef MATLAB_MEX_FILE
       // join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial2.begin(115200);
//     while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial2.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);
    // verify connection
    Serial2.println(F("Testing device connections..."));
    Serial2.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
   // Serial2.println(F("\nSend any character to begin DMP programming and demo: "));
   // while (Serial2.available() && Serial2.read()); // empty buffer
   // while (!Serial2.available());                 // wait for data
   // while (Serial2.available() && Serial2.read()); // empty buffer again

    // load and configure the DMP
    Serial2.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial2.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);
        // enable Arduino interrupt detection
        Serial2.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();
        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial2.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial2.print(F("DMP Initialization failed (code "));
        Serial2.print(devStatus);
        Serial2.println(F(")"));
    }       
    #endif 

  xD[0]=1;
 }

and in output tab I have implemented this code:

if (xD[0]==1){
    #ifndef MATLAB_MEX_FILE
// if programming failed, don't try to do anything
    if (!dmpReady) {               
        return;
    }
    
    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();
    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();        
        // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();       
        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;
        
#ifdef OUTPUT_READABLE_QUATERNION
        // display quaternion values in easy matrix form: w x y z
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        // Serial.print("quat\t");
        // Serial.print(q.w);
        // Serial.print("\t");
        // Serial.print(q.x);
        // Serial.print("\t");
        // Serial.print(q.y);
        // Serial.print("\t");
        // Serial.println(q.z);
#endif
        
#ifdef OUTPUT_READABLE_EULER
        // display Euler angles in degrees
//         mpu.dmpGetQuaternion(&q, fifoBuffer);
//         mpu.dmpGetEuler(euler, &q);
//         Serial.print("euler\t");
//         Serial.print(euler[0] * 180/M_PI);
//         Serial.print("\t");
//         Serial.print(euler[1] * 180/M_PI);
//         Serial.print("\t");
//         Serial.println(euler[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_YAWPITCHROLL
        // display Euler angles in degrees
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        *roll = ypr[0] * 180/M_PI;
        *pitch = ypr[1] * 180/M_PI;
        *yaw = ypr[2] * 180/M_PI;
        Serial2.print("ypr\t");
        Serial2.print(ypr[0] * 180/M_PI);
        Serial2.print("\t");
        Serial2.print(ypr[1] * 180/M_PI);
        Serial2.print("\t");
        Serial2.println(ypr[2] * 180/M_PI);
#endif
        
#ifdef OUTPUT_READABLE_REALACCEL
        // display real acceleration, adjusted to remove gravity
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        // Serial.print("areal\t");
        // Serial.print(aaReal.x);
        // Serial.print("\t");
        // Serial.print(aaReal.y);
        // Serial.print("\t");
        // Serial.println(aaReal.z);
#endif
        
#ifdef OUTPUT_READABLE_WORLDACCEL
        // display initial world-frame acceleration, adjusted to remove gravity
        // and rotated based on known orientation from quaternion
        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetAccel(&aa, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
        mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
        // Serial.print("aworld\t");
        // Serial.print(aaWorld.x);
        // Serial.print("\t");
        // Serial.print(aaWorld.y);
        // Serial.print("\t");
        // Serial.println(aaWorld.z);
#endif
        
#ifdef OUTPUT_TEAPOT
        // display quaternion values in InvenSense Teapot demo format:
        teapotPacket[2] = fifoBuffer[0];
        teapotPacket[3] = fifoBuffer[1];
        teapotPacket[4] = fifoBuffer[4];
        teapotPacket[5] = fifoBuffer[5];
        teapotPacket[6] = fifoBuffer[8];
        teapotPacket[7] = fifoBuffer[9];
        teapotPacket[8] = fifoBuffer[12];
        teapotPacket[9] = fifoBuffer[13];
        Serial.write(teapotPacket, 14);
        teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
#endif
        
        // blink LED to indicate activity
        // blinkState = !blinkState;
        // digitalWrite(LED_PIN, blinkState);
    }

#endif   
}

The solver I'm using is fixed-step discrete solver.

I build the S-function and then the model successfully. When I run the simulation in the external mode using Arduino mega there are jump and glitches in the output raw, pitch and roll angles as shown in the figures However, when I plotted the same code through Arduino IDE and monitor data on serial plotter there is no glitches and jumps in angles. I have also change the baud rate to 115200, solver to auto and sample time of s-function but the problem remain to persist. Any help would be appreciated! Thanks in advance!