Skip to main content

i2c I2C communication between arduino unoArduino Uno and nodemcu32Nodemcu32-s  (esp32ESP32)

I want to send data between an ESP-32  (NODEMCU-32S) and arduino unoan Arduino Uno but I haven't found any source on how to do that, so I tried this code ESP:

ESP-32 code:

#include <Wire.h>


void setup()
{

Serial.begin(9600);
Wire.begin(21, 22); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */

}


void loop()
{

       Wire.beginTransmission(8);
       Wire.write(3);  /* sends hello string */
       Wire.endTransmission();    /* stop transmitting */
       Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
 while(Wire.available()){
    char c = Wire.read();
    Serial.print(c);
 }
}
#include <Wire.h>

void setup() {
  Serial.begin(9600);
  Wire.begin(21, 22);      /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */
}

void loop() {
  Wire.beginTransmission(8);
  Wire.write(3);  /* sends hello string */
  Wire.endTransmission();  /* stop transmitting */
  Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
  while (Wire.available()) {
    char c = Wire.read();
    Serial.print(c);
  }
}

and arduinoAnd Arduino code:

#include <Wire.h>

void setup() {
 Wire.begin(8);                /* join i2c bus with address 8 */
 Wire.onReceive(receiveEvent); /* register receive event */
 Wire.onRequest(requestEvent); /* register request event */
 Serial.begin(9600);           /* start serial for debug */

}

void loop() {
    delay(100);
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
 while (0 <Wire.available()) {
    int c = Wire.read();      /* receive byte as a character */
    Serial.print(c);           /* print the character */
    
  }
  }

// function that executes whenever data is requested from master
void requestEvent() {
    

  Wire.write("hello esp");
}
#include <Wire.h>

void setup() {
  Wire.begin(8);                /* join i2c bus with address 8 */
  Wire.onReceive(receiveEvent); /* register receive event */
  Wire.onRequest(requestEvent); /* register request event */
  Serial.begin(9600);           /* start serial for debug */
}

void loop() {
  delay(100);
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
  while (0 < Wire.available()) {
    int c = Wire.read();        /* receive byte as a character */
    Serial.print(c);            /* print the character */
  }
}

// function that executes whenever data is requested from master
void requestEvent() {
  Wire.write("hello esp");
}

butBut I found that no data was sent.

I connected pin 21 to A4 and 22 to A5 directly. I

I cannot find where the problem is. also Also, I don't know whether the device address is correct or not, since when I tried an i2cI2C scanner it didn't discover any device.

Also, I hope ifthat there is a similar method to have two way-way UART communication between the arduinoArduino and espESP as I found none since I need both chips to send data to each other.

i2c communication between arduino uno and nodemcu32-s(esp32)

I want to send data between ESP-32(NODEMCU-32S) and arduino uno but I haven't found any source on how to do that so I tried this code ESP-32 code:

#include <Wire.h>


void setup()
{

Serial.begin(9600);
Wire.begin(21, 22); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */

}


void loop()
{

       Wire.beginTransmission(8);
       Wire.write(3);  /* sends hello string */
       Wire.endTransmission();    /* stop transmitting */
       Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
 while(Wire.available()){
    char c = Wire.read();
    Serial.print(c);
 }
}

and arduino code:

#include <Wire.h>

void setup() {
 Wire.begin(8);                /* join i2c bus with address 8 */
 Wire.onReceive(receiveEvent); /* register receive event */
 Wire.onRequest(requestEvent); /* register request event */
 Serial.begin(9600);           /* start serial for debug */

}

void loop() {
    delay(100);
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
 while (0 <Wire.available()) {
    int c = Wire.read();      /* receive byte as a character */
    Serial.print(c);           /* print the character */
    
  }
  }

// function that executes whenever data is requested from master
void requestEvent() {
    

  Wire.write("hello esp");
}

but I found that no data was sent

I connected pin 21 to A4 and 22 to A5 directly. I cannot find where the problem is. also, I don't know whether the device address is correct or not since when I tried an i2c scanner it didn't discover any device.

Also, I hope if there is a similar method to have two way UART communication between the arduino and esp as I found none since I need both chips to send data to each other.

I2C communication between Arduino Uno and Nodemcu32-s  (ESP32)

I want to send data between an ESP-32  (NODEMCU-32S) and an Arduino Uno but I haven't found any source on how to do that, so I tried this code:

ESP-32 code:

#include <Wire.h>

void setup() {
  Serial.begin(9600);
  Wire.begin(21, 22);      /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */
}

void loop() {
  Wire.beginTransmission(8);
  Wire.write(3);  /* sends hello string */
  Wire.endTransmission();  /* stop transmitting */
  Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
  while (Wire.available()) {
    char c = Wire.read();
    Serial.print(c);
  }
}

And Arduino code:

#include <Wire.h>

void setup() {
  Wire.begin(8);                /* join i2c bus with address 8 */
  Wire.onReceive(receiveEvent); /* register receive event */
  Wire.onRequest(requestEvent); /* register request event */
  Serial.begin(9600);           /* start serial for debug */
}

void loop() {
  delay(100);
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
  while (0 < Wire.available()) {
    int c = Wire.read();        /* receive byte as a character */
    Serial.print(c);            /* print the character */
  }
}

// function that executes whenever data is requested from master
void requestEvent() {
  Wire.write("hello esp");
}

But I found that no data was sent.

I connected pin 21 to A4 and 22 to A5 directly.

I cannot find where the problem is. Also, I don't know whether the device address is correct or not, since when I tried an I2C scanner it didn't discover any device.

Also, I hope that there is a similar method to have two-way UART communication between the Arduino and ESP as I found none since I need both chips to send data to each other.

Tweeted twitter.com/StackArduino/status/1338635018533482496
deleted 6814 characters in body
Source Link
#include <WiFi.h>
#include <Wire.h>

String  ClientRequest;
IPAddress staticIP850_244(192,168,137,244);
IPAddress gateway850_244(192,168,137,1);
IPAddress subnet850_244(255,255,255,0);

WiFiServer server(80);

WiFiClient client;

String myresultat;

String ReadIncomingRequest(){
while(client.available()) {
ClientRequest = (client.readStringUntil('\r'));
 if ((ClientRequest.indexOf("HTTP/1.1")>0)&&(ClientRequest.indexOf("/favicon.ico")<0)){
myresultat = ClientRequest;
}
}
return myresultat;
}

void setup()
{
ClientRequest = "";

Serial.begin(9600);
Wire.begin(21, 22); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */
 
  WiFi.disconnect();
  WiFi.begin("test","12345678");
  while ((!(WiFi.status() == WL_CONNECTED))){
    delay(300);

  }
  WiFi.config(staticIP850_244, gateway850_244, subnet850_244);
  server.begin();

}


void loop()
{

    client = server.available();
    if (!client) { return; }
    while(!client.available()){  delay(1); }
    ClientRequest = (ReadIncomingRequest());
    ClientRequest.remove(0, 5);
    ClientRequest.remove(ClientRequest.length()-9,9);
    if (ClientRequest == "ON") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(1);  /* sends hello string */
       Serial.println("sent on");
       Wire.endTransmission();    /* stop transmitting */
    }
    else if (ClientRequest == "OFF") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(2);  /* sends hello string */
              Serial.println("sent off");
       Wire.endTransmission();    /* stop transmitting */
    }
    else if (ClientRequest == "AUTO") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(3);  /* sends hello string */
              Serial.println("sent auto");
       Wire.endTransmission();    /* stop transmitting */
    }
        client.flush();
        Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
 while(Wire.available()){
    intchar c = Wire.read();
    Serial.print(c);
    client.println("HTTP/1.1 200 OK");
    client.println("Content-Type: text/html");
    client.println("");
    client.println("<!DOCTYPE HTML>");
    client.println("<html>");
    client.println(c);
    client.println("</html>");
 }
}
#include <Wire.h>
#define pump1 4
#define pump2 5
#define PWM 3
#define LDR A0
#define moisture_sensor A1

byte statusLed    = 13;

byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;  

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

boolean automatic;
void setup() {
 Wire.begin(8);                /* join i2c bus with address 8 */
 Wire.onReceive(receiveEvent); /* register receive event */
 Wire.onRequest(requestEvent); /* register request event */
 Serial.begin(9600);           /* start serial for debug */

   // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitres  = 0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

void loop() {
    if (automatic){
        int moisture_level = map(analogRead(moisture_sensor), 0, 1023, 100, 0); //scale the reading 100% to 0%
        int LDR_reading = map(analogReaddelay(LDR), 0, 1023, 0, 100); //scale the reading 100% to 0%          
           if (moisture_level < 60 && LDR_reading < 85) {
             digitalWrite(pump1, HIGH);
             digitalWrite(pump2, LOW);
             analogWrite(PWM,255);
             
        }
            else {
             digitalWrite(pump1, LOW);
             digitalWrite(pump2, LOW);
             analogWrite(PWM,0);
         
        }
      }
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
 while (0 <Wire.available()) {
    int c = Wire.read();      /* receive byte as a character */
    Serial.print(c);           /* print the character */
    if (c == 3) {
        Serial.println("auto mode");
        automatic = true;
      }
    else if (c == 1) {
             digitalWrite(pump1, HIGH);
             digitalWrite(pump2, LOW);
             analogWrite(PWM, 255);
             Serial.println();
             Serial.print("turned on");
             automatic = false;
      }
    else if (c == 2) {
             digitalWrite(pump1, LOW);
             digitalWrite(pump2, LOW);
             Serial.println();
             Serial.print("turned off");
             Serial.println();
             automatic = false;
      }
  }
   Serial.println();             /* to newline */
  }

// function that executes whenever data is requested from master
void requestEvent() {
     
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  { 
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
        
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;
      
    unsigned int frac;
    
    // Print the flow rate for this second in litres / minute
//    Serial.print("Flow rate: ");
//    Serial.print(int(flowRate));  // Print the integer part of the variable
//    Serial.print(".");             // Print the decimal point
    //Determine the fractional part. The 10 multiplier gives us 1 decimal place.
       frac = (flowRate - int(flowRate)) * 10;
//    Serial.print(frac, DEC) ;      // Print the fractional part of the variable
//    Serial.print("L/min");
//    // Print the number of litres flowed in this second
//    Serial.print("  Current Liquid Flowing: ");             // Output separator
//    Serial.print(flowMilliLitres);
//    Serial.print("mL/Sec");

    // Print the cumulative total of litres flowed since starting
    Serial.print("  Output Liquid Quantity: ");             // Output separator
    Serial.print(totalMilliLitres);
    Serial.println("mL"); 

    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  }

  Wire.write("we need"hello irrigation"esp");
}
#include <WiFi.h>
#include <Wire.h>

String  ClientRequest;
IPAddress staticIP850_244(192,168,137,244);
IPAddress gateway850_244(192,168,137,1);
IPAddress subnet850_244(255,255,255,0);

WiFiServer server(80);

WiFiClient client;

String myresultat;

String ReadIncomingRequest(){
while(client.available()) {
ClientRequest = (client.readStringUntil('\r'));
 if ((ClientRequest.indexOf("HTTP/1.1")>0)&&(ClientRequest.indexOf("/favicon.ico")<0)){
myresultat = ClientRequest;
}
}
return myresultat;
}

void setup()
{
ClientRequest = "";

Serial.begin(9600);
Wire.begin(21, 22); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */
 
  WiFi.disconnect();
  WiFi.begin("test","12345678");
  while ((!(WiFi.status() == WL_CONNECTED))){
    delay(300);

  }
  WiFi.config(staticIP850_244, gateway850_244, subnet850_244);
  server.begin();

}


void loop()
{

    client = server.available();
    if (!client) { return; }
    while(!client.available()){  delay(1); }
    ClientRequest = (ReadIncomingRequest());
    ClientRequest.remove(0, 5);
    ClientRequest.remove(ClientRequest.length()-9,9);
    if (ClientRequest == "ON") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(1);  /* sends hello string */
       Serial.println("sent on");
       Wire.endTransmission();    /* stop transmitting */
    }
    else if (ClientRequest == "OFF") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(2);  /* sends hello string */
              Serial.println("sent off");
       Wire.endTransmission();    /* stop transmitting */
    }
    else if (ClientRequest == "AUTO") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(3);  /* sends hello string */
              Serial.println("sent auto");
       Wire.endTransmission();    /* stop transmitting */
    }
        client.flush();
        Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
 while(Wire.available()){
    int c = Wire.read();
    Serial.print(c);
    client.println("HTTP/1.1 200 OK");
    client.println("Content-Type: text/html");
    client.println("");
    client.println("<!DOCTYPE HTML>");
    client.println("<html>");
    client.println(c);
    client.println("</html>");
 }
}
#include <Wire.h>
#define pump1 4
#define pump2 5
#define PWM 3
#define LDR A0
#define moisture_sensor A1

byte statusLed    = 13;

byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;  

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

boolean automatic;
void setup() {
 Wire.begin(8);                /* join i2c bus with address 8 */
 Wire.onReceive(receiveEvent); /* register receive event */
 Wire.onRequest(requestEvent); /* register request event */
 Serial.begin(9600);           /* start serial for debug */

   // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitres  = 0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

void loop() {
    if (automatic){
        int moisture_level = map(analogRead(moisture_sensor), 0, 1023, 100, 0); //scale the reading 100% to 0%
        int LDR_reading = map(analogRead(LDR), 0, 1023, 0, 100); //scale the reading 100% to 0%          
           if (moisture_level < 60 && LDR_reading < 85) {
             digitalWrite(pump1, HIGH);
             digitalWrite(pump2, LOW);
             analogWrite(PWM,255);
             
        }
            else {
             digitalWrite(pump1, LOW);
             digitalWrite(pump2, LOW);
             analogWrite(PWM,0);
         
        }
      }
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
 while (0 <Wire.available()) {
    int c = Wire.read();      /* receive byte as a character */
    Serial.print(c);           /* print the character */
    if (c == 3) {
        Serial.println("auto mode");
        automatic = true;
      }
    else if (c == 1) {
             digitalWrite(pump1, HIGH);
             digitalWrite(pump2, LOW);
             analogWrite(PWM, 255);
             Serial.println();
             Serial.print("turned on");
             automatic = false;
      }
    else if (c == 2) {
             digitalWrite(pump1, LOW);
             digitalWrite(pump2, LOW);
             Serial.println();
             Serial.print("turned off");
             Serial.println();
             automatic = false;
      }
  }
   Serial.println();             /* to newline */
  }

// function that executes whenever data is requested from master
void requestEvent() {
     
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  { 
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
        
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;
      
    unsigned int frac;
    
    // Print the flow rate for this second in litres / minute
//    Serial.print("Flow rate: ");
//    Serial.print(int(flowRate));  // Print the integer part of the variable
//    Serial.print(".");             // Print the decimal point
    //Determine the fractional part. The 10 multiplier gives us 1 decimal place.
       frac = (flowRate - int(flowRate)) * 10;
//    Serial.print(frac, DEC) ;      // Print the fractional part of the variable
//    Serial.print("L/min");
//    // Print the number of litres flowed in this second
//    Serial.print("  Current Liquid Flowing: ");             // Output separator
//    Serial.print(flowMilliLitres);
//    Serial.print("mL/Sec");

    // Print the cumulative total of litres flowed since starting
    Serial.print("  Output Liquid Quantity: ");             // Output separator
    Serial.print(totalMilliLitres);
    Serial.println("mL"); 

    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  }

  Wire.write("we need irrigation");
}
#include <Wire.h>


void setup()
{

Serial.begin(9600);
Wire.begin(21, 22); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */

}


void loop()
{

       Wire.beginTransmission(8);
       Wire.write(3);  /* sends hello string */
       Wire.endTransmission();    /* stop transmitting */
       Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
 while(Wire.available()){
    char c = Wire.read();
    Serial.print(c);
 }
}
#include <Wire.h>

void setup() {
 Wire.begin(8);                /* join i2c bus with address 8 */
 Wire.onReceive(receiveEvent); /* register receive event */
 Wire.onRequest(requestEvent); /* register request event */
 Serial.begin(9600);           /* start serial for debug */

}

void loop() {
    delay(100);
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
 while (0 <Wire.available()) {
    int c = Wire.read();      /* receive byte as a character */
    Serial.print(c);           /* print the character */
    
  }
  }

// function that executes whenever data is requested from master
void requestEvent() {
    

  Wire.write("hello esp");
}
Source Link

i2c communication between arduino uno and nodemcu32-s(esp32)

I want to send data between ESP-32(NODEMCU-32S) and arduino uno but I haven't found any source on how to do that so I tried this code ESP-32 code:

#include <WiFi.h>
#include <Wire.h>

String  ClientRequest;
IPAddress staticIP850_244(192,168,137,244);
IPAddress gateway850_244(192,168,137,1);
IPAddress subnet850_244(255,255,255,0);

WiFiServer server(80);

WiFiClient client;

String myresultat;

String ReadIncomingRequest(){
while(client.available()) {
ClientRequest = (client.readStringUntil('\r'));
 if ((ClientRequest.indexOf("HTTP/1.1")>0)&&(ClientRequest.indexOf("/favicon.ico")<0)){
myresultat = ClientRequest;
}
}
return myresultat;
}

void setup()
{
ClientRequest = "";

Serial.begin(9600);
Wire.begin(21, 22); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */

  WiFi.disconnect();
  WiFi.begin("test","12345678");
  while ((!(WiFi.status() == WL_CONNECTED))){
    delay(300);

  }
  WiFi.config(staticIP850_244, gateway850_244, subnet850_244);
  server.begin();

}


void loop()
{

    client = server.available();
    if (!client) { return; }
    while(!client.available()){  delay(1); }
    ClientRequest = (ReadIncomingRequest());
    ClientRequest.remove(0, 5);
    ClientRequest.remove(ClientRequest.length()-9,9);
    if (ClientRequest == "ON") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(1);  /* sends hello string */
       Serial.println("sent on");
       Wire.endTransmission();    /* stop transmitting */
    }
    else if (ClientRequest == "OFF") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(2);  /* sends hello string */
              Serial.println("sent off");
       Wire.endTransmission();    /* stop transmitting */
    }
    else if (ClientRequest == "AUTO") {
       Wire.beginTransmission(8); /* begin with device address 8 */
       Wire.write(3);  /* sends hello string */
              Serial.println("sent auto");
       Wire.endTransmission();    /* stop transmitting */
    }
        client.flush();
        Wire.requestFrom(8, 18); /* request & read data of size 13 from slave */
 while(Wire.available()){
    int c = Wire.read();
    Serial.print(c);
    client.println("HTTP/1.1 200 OK");
    client.println("Content-Type: text/html");
    client.println("");
    client.println("<!DOCTYPE HTML>");
    client.println("<html>");
    client.println(c);
    client.println("</html>");
 }
}

and arduino code:

#include <Wire.h>
#define pump1 4
#define pump2 5
#define PWM 3
#define LDR A0
#define moisture_sensor A1

byte statusLed    = 13;

byte sensorInterrupt = 0;  // 0 = digital pin 2
byte sensorPin       = 2;

// The hall-effect flow sensor outputs approximately 4.5 pulses per second per
// litre/minute of flow.
float calibrationFactor = 4.5;

volatile byte pulseCount;  

float flowRate;
unsigned int flowMilliLitres;
unsigned long totalMilliLitres;

unsigned long oldTime;

boolean automatic;
void setup() {
 Wire.begin(8);                /* join i2c bus with address 8 */
 Wire.onReceive(receiveEvent); /* register receive event */
 Wire.onRequest(requestEvent); /* register request event */
 Serial.begin(9600);           /* start serial for debug */

   // Set up the status LED line as an output
  pinMode(statusLed, OUTPUT);
  digitalWrite(statusLed, HIGH);  // We have an active-low LED attached
  
  pinMode(sensorPin, INPUT);
  digitalWrite(sensorPin, HIGH);

  pulseCount        = 0;
  flowRate          = 0.0;
  flowMilliLitres   = 0;
  totalMilliLitres  = 0;
  oldTime           = 0;

  // The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
  // Configured to trigger on a FALLING state change (transition from HIGH
  // state to LOW state)
  attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}

void loop() {
    if (automatic){
        int moisture_level = map(analogRead(moisture_sensor), 0, 1023, 100, 0); //scale the reading 100% to 0%
        int LDR_reading = map(analogRead(LDR), 0, 1023, 0, 100); //scale the reading 100% to 0%          
           if (moisture_level < 60 && LDR_reading < 85) {
             digitalWrite(pump1, HIGH);
             digitalWrite(pump2, LOW);
             analogWrite(PWM,255);
             
        }
            else {
             digitalWrite(pump1, LOW);
             digitalWrite(pump2, LOW);
             analogWrite(PWM,0);
         
        }
      }
}

// function that executes whenever data is received from master
void receiveEvent(int howMany) {
 while (0 <Wire.available()) {
    int c = Wire.read();      /* receive byte as a character */
    Serial.print(c);           /* print the character */
    if (c == 3) {
        Serial.println("auto mode");
        automatic = true;
      }
    else if (c == 1) {
             digitalWrite(pump1, HIGH);
             digitalWrite(pump2, LOW);
             analogWrite(PWM, 255);
             Serial.println();
             Serial.print("turned on");
             automatic = false;
      }
    else if (c == 2) {
             digitalWrite(pump1, LOW);
             digitalWrite(pump2, LOW);
             Serial.println();
             Serial.print("turned off");
             Serial.println();
             automatic = false;
      }
  }
   Serial.println();             /* to newline */
  }

// function that executes whenever data is requested from master
void requestEvent() {
     
   if((millis() - oldTime) > 1000)    // Only process counters once per second
  { 
    // Disable the interrupt while calculating flow rate and sending the value to
    // the host
    detachInterrupt(sensorInterrupt);
        
    // Because this loop may not complete in exactly 1 second intervals we calculate
    // the number of milliseconds that have passed since the last execution and use
    // that to scale the output. We also apply the calibrationFactor to scale the output
    // based on the number of pulses per second per units of measure (litres/minute in
    // this case) coming from the sensor.
    flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
    
    // Note the time this processing pass was executed. Note that because we've
    // disabled interrupts the millis() function won't actually be incrementing right
    // at this point, but it will still return the value it was set to just before
    // interrupts went away.
    oldTime = millis();
    
    // Divide the flow rate in litres/minute by 60 to determine how many litres have
    // passed through the sensor in this 1 second interval, then multiply by 1000 to
    // convert to millilitres.
    flowMilliLitres = (flowRate / 60) * 1000;
    
    // Add the millilitres passed in this second to the cumulative total
    totalMilliLitres += flowMilliLitres;
      
    unsigned int frac;
    
    // Print the flow rate for this second in litres / minute
//    Serial.print("Flow rate: ");
//    Serial.print(int(flowRate));  // Print the integer part of the variable
//    Serial.print(".");             // Print the decimal point
    //Determine the fractional part. The 10 multiplier gives us 1 decimal place.
       frac = (flowRate - int(flowRate)) * 10;
//    Serial.print(frac, DEC) ;      // Print the fractional part of the variable
//    Serial.print("L/min");
//    // Print the number of litres flowed in this second
//    Serial.print("  Current Liquid Flowing: ");             // Output separator
//    Serial.print(flowMilliLitres);
//    Serial.print("mL/Sec");

    // Print the cumulative total of litres flowed since starting
    Serial.print("  Output Liquid Quantity: ");             // Output separator
    Serial.print(totalMilliLitres);
    Serial.println("mL"); 

    // Reset the pulse counter so we can start incrementing again
    pulseCount = 0;
    
    // Enable the interrupt again now that we've finished sending output
    attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
  }

  Wire.write("we need irrigation");
}

but I found that no data was sent

I connected pin 21 to A4 and 22 to A5 directly. I cannot find where the problem is. also, I don't know whether the device address is correct or not since when I tried an i2c scanner it didn't discover any device.

Also, I hope if there is a similar method to have two way UART communication between the arduino and esp as I found none since I need both chips to send data to each other.