
MySQL and Linux/Unix

Abstract

This is the MySQL Linux extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2025-11-12 (revision: 83947)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 Installing MySQL on Unix/Linux Using Generic Binaries .. 1
2 Installing MySQL on Linux ... 5

2.1 Installing MySQL on Linux Using the MySQL Yum Repository .. 6
2.2 Installing MySQL on Linux Using the MySQL APT Repository ... 10
2.3 Installing MySQL on Linux Using the MySQL SLES Repository ... 10
2.4 Installing MySQL on Linux Using RPM Packages from Oracle .. 11
2.5 Installing MySQL on Linux Using Debian Packages from Oracle ... 16
2.6 Deploying MySQL on Linux with Docker Containers ... 17

2.6.1 Basic Steps for MySQL Server Deployment with Docker .. 17
2.6.2 More Topics on Deploying MySQL Server with Docker .. 22
2.6.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker 29

2.7 Installing MySQL on Linux from the Native Software Repositories ... 30
2.8 Installing MySQL on Linux with Juju .. 32
2.9 Managing MySQL Server with systemd ... 32

3 Installing MySQL on Solaris ... 39
3.1 Installing MySQL on Solaris Using a Solaris PKG .. 40

4 Installing MySQL on FreeBSD ... 43
5 Initializing the Data Directory ... 45

iii

iv

Preface and Legal Notices
This is the MySQL Linux extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2025, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other

v

https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Installing MySQL on Unix/Linux Using Generic
Binaries

Oracle provides a set of binary distributions of MySQL. These include generic binary distributions in the
form of compressed tar files (files with a .tar.xz extension) for a number of platforms, and binaries in
platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed tar file binary distribution on Unix/Linux
platforms. For Linux-generic binary distribution installation instructions with a focus on MySQL security
features, refer to the Secure Deployment Guide. For other platform-specific binary package formats, see
the other platform-specific sections in this manual. For example, for Windows distributions, see Installing
MySQL on Microsoft Windows. See How to Get MySQL on how to obtain MySQL in different distribution
formats.

MySQL compressed tar file binary distributions have names of the form mysql-VERSION-OS.tar.xz,
where VERSION is a number (for example, 8.0.44), and OS indicates the type of operating system for
which the distribution is intended (for example, pc-linux-i686 or winx64).

There is also a “minimal install” version of the MySQL compressed tar file for the Linux generic binary
distribution, which has a name of the form mysql-VERSION-OS-GLIBCVER-ARCH-minimal.tar.xz.
The minimal install distribution excludes debug binaries and is stripped of debug symbols, making
it significantly smaller than the regular binary distribution. If you choose to install the minimal install
distribution, remember to adjust for the difference in file name format in the instructions that follow.

Warnings

• If you have previously installed MySQL using your operating system native
package management system, such as Yum or APT, you may experience
problems installing using a native binary. Make sure your previous MySQL
installation has been removed entirely (using your package management
system), and that any additional files, such as old versions of your data files, have
also been removed. You should also check for configuration files such as /etc/
my.cnf or the /etc/mysql directory and delete them.

For information about replacing third-party packages with official MySQL
packages, see the related APT guide or Yum guide.

• MySQL has a dependency on the libaio library. Data directory initialization
and subsequent server startup steps fail if this library is not installed locally. If
necessary, install it using the appropriate package manager. For example, on
Yum-based systems:

$> yum search libaio # search for info
$> yum install libaio # install library

Or, on APT-based systems:

$> apt-cache search libaio # search for info
$> apt-get install libaio1 # install library

• Oracle Linux 8 / Red Hat 8 (EL8): These platforms by default do not install the
file /lib64/libtinfo.so.5, which is required by the MySQL client bin/
mysql for packages mysql-VERSION-el7-x86_64.tar.gz and mysql-
VERSION-linux-glibc2.12-x86_64.tar.xz. To work around this issue,
install the ncurses-compat-libs package:

1

https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html
https://dev.mysql.com/doc/refman/8.0/en/windows-installation.html
https://dev.mysql.com/doc/refman/8.0/en/getting-mysql.html
http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html

$> yum install ncurses-compat-libs

• If no RPM or .deb file specific to your distribution is provided by Oracle (or
by your Linux vendor), you can try the generic binaries. In some cases, due
to library incompatibilities or other issues, these may not work with your Linux
installation. In such cases, you can try to compile and install MySQL from source.
See Installing MySQL from Source, for more information and instructions

To install a compressed tar file binary distribution, unpack it at the installation location you choose
(typically /usr/local/mysql). This creates the directories shown in the following table.

Table 1.1 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin mysqld server, client and utility programs

docs MySQL manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

share Error messages, dictionary, and SQL for database
installation

support-files Miscellaneous support files

Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug
version of MySQL from a source distribution, use the appropriate configuration options to enable
debugging support. See Installing MySQL from Source.

To install and use a MySQL binary distribution, the command sequence looks like this:

$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql
$> cd /usr/local
$> tar xvf /path/to/mysql-VERSION-OS.tar.xz
$> ln -s full-path-to-mysql-VERSION-OS mysql
$> cd mysql
$> mkdir mysql-files
$> chown mysql:mysql mysql-files
$> chmod 750 mysql-files
$> bin/mysqld --initialize --user=mysql
$> bin/mysql_ssl_rsa_setup
$> bin/mysqld_safe --user=mysql &
Next command is optional
$> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure assumes that you have root (administrator) access to your system.
Alternatively, you can prefix each command using the sudo (Linux) or pfexec
(Solaris) command.

The mysql-files directory provides a convenient location to use as the value for the
secure_file_priv system variable, which limits import and export operations to a specific directory.
See Server System Variables.

A more detailed version of the preceding description for installing a binary distribution follows.

2

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Create a mysql User and Group

Create a mysql User and Group

If your system does not already have a user and group to use for running mysqld, you may need to create
them. The following commands add the mysql group and the mysql user. You might want to call the
user and group something else instead of mysql. If so, substitute the appropriate name in the following
instructions. The syntax for useradd and groupadd may differ slightly on different versions of Unix/Linux,
or they may have different names such as adduser and addgroup.

$> groupadd mysql
$> useradd -r -g mysql -s /bin/false mysql

Note

Because the user is required only for ownership purposes, not login purposes, the
useradd command uses the -r and -s /bin/false options to create a user
that does not have login permissions to your server host. Omit these options if your
useradd does not support them.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The example
here unpacks the distribution under /usr/local. The instructions, therefore, assume that you have
permission to create files and directories in /usr/local. If that directory is protected, you must perform
the installation as root.

$> cd /usr/local

Obtain a distribution file using the instructions in How to Get MySQL. For a given release, binary
distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. tar can uncompress and unpack the
distribution if it has z option support:

$> tar xvf /path/to/mysql-VERSION-OS.tar.xz

The tar command creates a directory named mysql-VERSION-OS.

To install MySQL from a compressed tar file binary distribution, your system must have GNU XZ Utils
to uncompress the distribution and a reasonable tar to unpack it.

Note

The compression algorithm changed from Gzip to XZ in MySQL Server 8.0.12; and
the generic binary's file extension changed from .tar.gz to .tar.xz.

GNU tar is known to work. The standard tar provided with some operating systems is not able to unpack
the long file names in the MySQL distribution. You should download and install GNU tar, or if available,
use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar within a GNU
or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is available from
http://www.gnu.org/software/tar/.

If your tar does not support the xz format then use the xz command to unpack the distribution and tar
to unpack it. Replace the preceding tar command with the following alternative command to uncompress
and extract the distribution:

$> xz -dc /path/to/mysql-VERSION-OS.tar.xz | tar x

Next, create a symbolic link to the installation directory created by tar:

3

https://dev.mysql.com/doc/refman/8.0/en/getting-mysql.html
http://www.gnu.org/software/tar/

Perform Postinstallation Setup

$> ln -s full-path-to-mysql-VERSION-OS mysql

The ln command makes a symbolic link to the installation directory. This enables you to refer more easily
to it as /usr/local/mysql. To avoid having to type the path name of client programs always when you
are working with MySQL, you can add the /usr/local/mysql/bin directory to your PATH variable:

$> export PATH=$PATH:/usr/local/mysql/bin

Perform Postinstallation Setup

The remainder of the installation process involves setting distribution ownership and access permissions,
initializing the data directory, starting the MySQL server, and setting up the configuration file. For
instructions, see Postinstallation Setup and Testing.

4

https://dev.mysql.com/doc/refman/8.0/en/postinstallation.html

Chapter 2 Installing MySQL on Linux

Table of Contents
2.1 Installing MySQL on Linux Using the MySQL Yum Repository .. 6
2.2 Installing MySQL on Linux Using the MySQL APT Repository ... 10
2.3 Installing MySQL on Linux Using the MySQL SLES Repository ... 10
2.4 Installing MySQL on Linux Using RPM Packages from Oracle .. 11
2.5 Installing MySQL on Linux Using Debian Packages from Oracle ... 16
2.6 Deploying MySQL on Linux with Docker Containers ... 17

2.6.1 Basic Steps for MySQL Server Deployment with Docker .. 17
2.6.2 More Topics on Deploying MySQL Server with Docker .. 22
2.6.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker 29

2.7 Installing MySQL on Linux from the Native Software Repositories ... 30
2.8 Installing MySQL on Linux with Juju .. 32
2.9 Managing MySQL Server with systemd ... 32

Linux supports a number of different solutions for installing MySQL. We recommend that you use one of
the distributions from Oracle, for which several methods for installation are available:

Table 2.1 Linux Installation Methods and Information

Type Setup Method Additional Information

Apt Enable the MySQL Apt repository Documentation

Yum Enable the MySQL Yum
repository

Documentation

Zypper Enable the MySQL SLES
repository

Documentation

RPM Download a specific package Documentation

DEB Download a specific package Documentation

Generic Download a generic package Documentation

Source Compile from source Documentation

Docker Use the Oracle Container
Registry. You can also use My
Oracle Support for the MySQL
Enterprise Edition.

Documentation

Oracle Unbreakable Linux
Network

Use ULN channels Documentation

As an alternative, you can use the package manager on your system to automatically download and
install MySQL with packages from the native software repositories of your Linux distribution. These native
packages are often several versions behind the currently available release. You are also normally unable
to install innovation releases, since these are not usually made available in the native repositories. For
more information on using the native package installers, see Section 2.7, “Installing MySQL on Linux from
the Native Software Repositories”.

Note

For many Linux installations, you want to set up MySQL to be started automatically
when your machine starts. Many of the native package installations perform this

5

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://support.oracle.com/
https://support.oracle.com/
https://dev.mysql.com/doc/refman/8.0/en/uln-installation.html

Installing MySQL on Linux Using the MySQL Yum Repository

operation for you, but for source, binary and RPM solutions you may need to
set this up separately. The required script, mysql.server, can be found in the
support-files directory under the MySQL installation directory or in a MySQL
source tree. You can install it as /etc/init.d/mysql for automatic MySQL
startup and shutdown. See mysql.server — MySQL Server Startup Script.

2.1 Installing MySQL on Linux Using the MySQL Yum Repository
The MySQL Yum repository for Oracle Linux, Red Hat Enterprise Linux, CentOS, and Fedora provides
RPM packages for installing the MySQL server, client, MySQL Workbench, MySQL Utilities, MySQL
Router, MySQL Shell, Connector/ODBC, Connector/Python and so on (not all packages are available for
all the distributions; see Installing Additional MySQL Products and Components with Yum for details).

Before You Start

As a popular, open-source software, MySQL, in its original or re-packaged form, is widely installed on
many systems from various sources, including different software download sites, software repositories, and
so on. The following instructions assume that MySQL is not already installed on your system using a third-
party-distributed RPM package; if that is not the case, follow the instructions given in Upgrading MySQL
with the MySQL Yum Repository or Replacing a Third-Party Distribution of MySQL Using the MySQL Yum
Repository.

Important

Repository setup RPM file names begin with mysql-84-lts-community to
highlight the default active MySQL subrepository, which is MySQL 8.4 today.
MySQL 8.0 must be manually enabled via your local repository configuration to
install MySQL 8.0 instead of MySQL 8.4.

Steps for a Fresh Installation of MySQL

Follow the steps below to install the latest GA version of MySQL with the MySQL Yum repository:

1.Adding the MySQL Yum Repository

First, add the MySQL Yum repository to your system's repository list. This is a one-time operation,
which can be performed by installing an RPM provided by MySQL. Follow these steps:

a. Go to the Download MySQL Yum Repository page (https://dev.mysql.com/downloads/repo/yum/) in
the MySQL Developer Zone.

b. Select and download the release package for your platform.

c. Install the downloaded release package with the following command, replacing platform-and-
version-specific-package-name with the name of the downloaded RPM package:

$> sudo yum install platform-and-version-specific-package-name.rpm

For an EL6-based system, the command is in the form of (note the mysql80 prefix instead of
mysql84 because EL6-based systems do not support MySQL 8.4):

$> sudo yum install mysql80-community-release-el6-{version-number}.noarch.rpm

For an EL7-based system:

$> sudo yum install mysql84-community-release-el7-{version-number}.noarch.rpm

6

https://dev.mysql.com/doc/refman/8.0/en/mysql-server.html
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/refman/8.0/en/updating-yum-repo.html
https://dev.mysql.com/doc/refman/8.0/en/updating-yum-repo.html
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html
https://dev.mysql.com/doc/refman/5.7/en/replace-third-party-yum.html
https://dev.mysql.com/downloads/repo/yum/

Selecting a Release Series

Fpr EL8 or later, change el7 to the version number of your Enterprise Linux.

For Fedora 41 and 42:

$> sudo dnf install mysql84-community-release-fcnn-{rpm-version-number}.noarch.rpm

Replace nn with the Fedora version and {rpm-version-number} with the rpm's version number.
For example, for:

mysql84-community-release-fc42-1.noarch.rpm

The installation command adds the MySQL Yum repository to your system's repository list and
downloads the GnuPG key to check the integrity of the software packages. See Signature Checking
Using GnuPG for details on GnuPG key checking.

You can check that the MySQL Yum repository has been successfully added by the following
command (for dnf-enabled systems, replace yum in the command with dnf):

$> yum repolist enabled | grep "mysql.*-community.*"

Note

Once the MySQL Yum repository is enabled on your system, any system-
wide update by the yum update command (or dnf upgrade for dnf-enabled
systems) upgrades MySQL packages on your system and replaces any native
third-party packages, if Yum finds replacements for them in the MySQL Yum
repository; see Upgrading MySQL with the MySQL Yum Repository, for a
discussion on some possible effects of that on your system, see Upgrading the
Shared Client Libraries.

2.Selecting a Release Series

When using the MySQL Yum repository, the latest LTS series (currently MySQL 8.4) is selected for
installation by default. If you want to install MySQL 8.4 instead of 8.0 then skip this step.

Within the MySQL Yum repository, different release series of the MySQL Community Server are hosted
in different subrepositories. The subrepository for the latest GA series (currently MySQL 8.4) is enabled
by default, and the subrepositories for all other series (for example, the MySQL 8.0 series) are disabled
by default. Use this command to see all the subrepositories in the MySQL Yum repository, and see
which of them are enabled or disabled (for dnf-enabled systems, replace yum in the command with
dnf):

$> yum repolist all | grep mysql

To install the latest release from the latest LTS series, no configuration is needed. To install the
latest release from a specific series other than the latest LTS series, disable the subrepository for the
latest LTS series and enable the subrepository for the specific series before running the installation
command. If your platform supports yum-config-manager, you can do that by issuing these
commands, which disable the subrepository for the 8.4 series and enable the one for the 8.0 series:

$> sudo yum-config-manager --disable mysql-8.4-lts-community
$> sudo yum-config-manager --disable mysql-tools-8.4-lts-community
$> sudo yum-config-manager --enable mysql80-community

7

https://dev.mysql.com/doc/refman/8.0/en/checking-gpg-signature.html
https://dev.mysql.com/doc/refman/8.0/en/checking-gpg-signature.html
https://dev.mysql.com/doc/refman/8.0/en/updating-yum-repo.html
https://dev.mysql.com/doc/refman/8.0/en/updating-yum-repo.html#updating-yum-repo-client-lib
https://dev.mysql.com/doc/refman/8.0/en/updating-yum-repo.html#updating-yum-repo-client-lib

Disabling the Default MySQL Module

$> sudo yum-config-manager --enable mysql-tools-community

For dnf-enabled platforms:

$> sudo dnf config-manager --disable mysql-8.4-lts-community
$> sudo dnf config-manager --disable mysql-tools-8.4-lts-community
$> sudo dnf config-manager --enable mysql80-community
$> sudo dnf config-manager --enable mysql-tools-community

Besides using yum-config-manager or the dnf config-manager command, you can also select a
release series by editing manually the /etc/yum.repos.d/mysql-community.repo file. This is a
typical entry for a MySQL 8.0 subrepository:

[mysql80-community]
name=MySQL 8.0 Community Server
baseurl=http://repo.mysql.com/yum/mysql-8.0-community/el/9/$basearch/
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-mysql-2023

Find the entry for the subrepository you want to configure, and edit the enabled option. Specify
enabled=0 to disable a subrepository, or enabled=1 to enable a subrepository. For example,
to install MySQL 8.0, make sure you have enabled=0 for the other MySQL series entries and
enabled=1 for MySQL 8.0.

You should only enable subrepository for one release series at any time. When subrepositories for
more than one release series are enabled, Yum uses the latest series.

Verify that the correct subrepositories have been enabled and disabled by running the following
command and checking its output (for dnf-enabled systems, replace yum in the command with dnf):

$> yum repolist enabled | grep mysql

3.Disabling the Default MySQL Module

(EL8 systems only) EL8-based systems such as RHEL8 and Oracle Linux 8 include a MySQL module
that is enabled by default. Unless this module is disabled, it masks packages provided by MySQL
repositories. To disable the included module and make the MySQL repository packages visible, use the
following command (for dnf-enabled systems, replace yum in the command with dnf):

$> sudo yum module disable mysql

4.Installing MySQL

Install MySQL by the following command (for dnf-enabled systems, replace yum in the command with
dnf):

$> sudo yum install mysql-community-server

This installs the package for MySQL server (mysql-community-server) and also packages for
the components required to run the server, including packages for the client (mysql-community-
client), the common error messages and character sets for client and server (mysql-community-
common), and the shared client libraries (mysql-community-libs).

8

Starting the MySQL Server

5.Starting the MySQL Server

Start the MySQL server with the following command:

$> systemctl start mysqld

You can check the status of the MySQL server with the following command:

$> systemctl status mysqld

If the operating system is systemd enabled, standard systemctl (or alternatively, service with the
arguments reversed) commands such as stop, start, status, and restart should be used to manage
the MySQL server service. The mysqld service is enabled by default, and it starts at system reboot. See
Section 2.9, “Managing MySQL Server with systemd” for additional information.

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• SSL certificate and key files are generated in the data directory.

• validate_password is installed and enabled.

• A superuser account 'root'@'localhost is created. A password for the superuser is set and stored
in the error log file. To reveal it, use the following command:

$> sudo grep 'temporary password' /var/log/mysqld.log

Change the root password as soon as possible by logging in with the generated, temporary password
and set a custom password for the superuser account:

$> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

validate_password is installed by default. The default password policy
implemented by validate_password requires that passwords contain at least
one uppercase letter, one lowercase letter, one digit, and one special character,
and that the total password length is at least 8 characters.

For more information on the postinstallation procedures, see Postinstallation Setup and Testing.

Note

Compatibility Information for EL7-based platforms: The following RPM packages
from the native software repositories of the platforms are incompatible with the
package from the MySQL Yum repository that installs the MySQL server. Once you
have installed MySQL using the MySQL Yum repository, you cannot install these
packages (and vice versa).

• akonadi-mysql

Installing Additional MySQL Products and Components with Yum

You can use Yum to install and manage individual components of MySQL. Some of these components
are hosted in sub-repositories of the MySQL Yum repository: for example, the MySQL Connectors are to

9

https://dev.mysql.com/doc/refman/8.0/en/validate-password.html
https://dev.mysql.com/doc/refman/8.0/en/validate-password.html
https://dev.mysql.com/doc/refman/8.0/en/postinstallation.html

Platform Specific Notes

be found in the MySQL Connectors Community sub-repository, and the MySQL Workbench in MySQL
Tools Community. You can use the following command to list the packages for all the MySQL components
available for your platform from the MySQL Yum repository (for dnf-enabled systems, replace yum in the
command with dnf):

$> sudo yum --disablerepo=* --enablerepo='mysql*-community*' list available

Install any packages of your choice with the following command, replacing package-name with name of
the package (for dnf-enabled systems, replace yum in the command with dnf):

$> sudo yum install package-name

For example, to install MySQL Workbench on Fedora:

$> sudo dnf install mysql-workbench-community

To install the shared client libraries (for dnf-enabled systems, replace yum in the command with dnf):

$> sudo yum install mysql-community-libs

Platform Specific Notes

ARM Support

ARM 64-bit (aarch64) is supported on Oracle Linux 7 and requires the Oracle Linux 7 Software Collections
Repository (ol7_software_collections). For example, to install the server:

$> yum-config-manager --enable ol7_software_collections
$> yum install mysql-community-server

Note

ARM 64-bit (aarch64) is supported on Oracle Linux 7 as of MySQL 8.0.12.

Known Limitation

The 8.0.12 release requires you to adjust the libstdc++7 path by executing ln -
s /opt/oracle/oracle-armtoolset-1/root/usr/lib64 /usr/lib64/
gcc7 after executing the yum install step.

Updating MySQL with Yum

Besides installation, you can also perform updates for MySQL products and components using the MySQL
Yum repository. See Upgrading MySQL with the MySQL Yum Repository for details.

2.2 Installing MySQL on Linux Using the MySQL APT Repository
The MySQL APT repository provides deb packages for installing and managing the MySQL server, client,
and other components on the current Debian and Ubuntu releases.

Instructions for using the MySQL APT Repository are available in A Quick Guide to Using the MySQL APT
Repository.

2.3 Installing MySQL on Linux Using the MySQL SLES Repository
The MySQL SLES repository provides RPM packages for installing and managing the MySQL server,
client, and other components on SUSE Enterprise Linux Server.

Instructions for using the MySQL SLES repository are available in A Quick Guide to Using the MySQL
SLES Repository.

10

https://dev.mysql.com/doc/refman/8.0/en/updating-yum-repo.html
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/

Installing MySQL on Linux Using RPM Packages from Oracle

2.4 Installing MySQL on Linux Using RPM Packages from Oracle
The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM packages
provided by Oracle. There are two sources for obtaining them, for the Community Edition of MySQL:

• From the MySQL software repositories:

• The MySQL Yum repository (see Section 2.1, “Installing MySQL on Linux Using the MySQL Yum
Repository” for details).

• The MySQL SLES repository (see Section 2.3, “Installing MySQL on Linux Using the MySQL SLES
Repository” for details).

• From the Download MySQL Community Server page in the MySQL Developer Zone.

Note

RPM distributions of MySQL are also provided by other vendors. Be aware that
they may differ from those built by Oracle in features, capabilities, and conventions
(including communication setup), and that the installation instructions in this manual
do not necessarily apply to them. The vendor's instructions should be consulted
instead.

MySQL RPM Packages
Table 2.2 RPM Packages for MySQL Community Edition

Package Name Summary

mysql-community-client MySQL client applications and tools

mysql-community-client-plugins Shared plugins for MySQL client applications

mysql-community-common Common files for server and client libraries

mysql-community-devel Development header files and libraries for MySQL
database client applications

mysql-community-embedded-compat MySQL server as an embedded library with
compatibility for applications using version 18 of the
library

mysql-community-icu-data-files MySQL packaging of ICU data files needed by
MySQL regular expressions

mysql-community-libs Shared libraries for MySQL database client
applications

mysql-community-libs-compat Shared compatibility libraries for previous MySQL
installations; only present if previous MySQL
versions are supported by the platform

mysql-community-server Database server and related tools

mysql-community-server-debug Debug server and plugin binaries

mysql-community-test Test suite for the MySQL server

mysql-community The source code RPM looks similar to mysql-
community-8.0.44-1.el7.src.rpm, depending on
selected OS

Additional *debuginfo* RPMs There are several debuginfo packages: mysql-
community-client-debuginfo, mysql-community-

11

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/

MySQL RPM Packages

Package Name Summary
libs-debuginfo mysql-community-server-debug-
debuginfo mysql-community-server-debuginfo, and
mysql-community-test-debuginfo.

Table 2.3 RPM Packages for the MySQL Enterprise Edition

Package Name Summary

mysql-commercial-backup MySQL Enterprise Backup (added in 8.0.11)

mysql-commercial-client MySQL client applications and tools

mysql-commercial-client-plugins Shared plugins for MySQL client applications

mysql-commercial-common Common files for server and client libraries

mysql-commercial-devel Development header files and libraries for MySQL
database client applications

mysql-commercial-embedded-compat MySQL server as an embedded library with
compatibility for applications using version 18 of the
library

mysql-commercial-icu-data-files MySQL packaging of ICU data files needed by
MySQL regular expressions

mysql-commercial-libs Shared libraries for MySQL database client
applications

mysql-commercial-libs-compat Shared compatibility libraries for previous MySQL
installations; only present if previous MySQL
versions are supported by the platform. The version
of the libraries matches the version of the libraries
installed by default by the distribution you are using.

mysql-commercial-server Database server and related tools

mysql-commercial-test Test suite for the MySQL server

Additional *debuginfo* RPMs There are several debuginfo packages: mysql-
commercial-client-debuginfo, mysql-commercial-
libs-debuginfo mysql-commercial-server-debug-
debuginfo mysql-commercial-server-debuginfo, and
mysql-commercial-test-debuginfo.

The full names for the RPMs have the following syntax:

packagename-version-distribution-arch.rpm

The distribution and arch values indicate the Linux distribution and the processor type for which the
package was built. See the table below for lists of the distribution identifiers:

Table 2.4 MySQL Linux RPM Package Distribution Identifiers

Distribution Value Intended Use

el{version} where {version} is the major
Enterprise Linux version, such as el8

EL6 (8.0), EL7, EL8, EL9, and EL10-based
platforms (for example, the corresponding versions
of Oracle Linux, Red Hat Enterprise Linux, and
CentOS)

fc{version} where {version} is the major
Fedora version, such as fc37

Fedora 41 and 42

12

MySQL RPM Packages

Distribution Value Intended Use

sles12 SUSE Linux Enterprise Server 12

To see all files in an RPM package (for example, mysql-community-server), use the following
command:

$> rpm -qpl mysql-community-server-version-distribution-arch.rpm

The discussion in the rest of this section applies only to an installation process using the RPM packages
directly downloaded from Oracle, instead of through a MySQL repository.

Dependency relationships exist among some of the packages. If you plan to install many of the packages,
you may wish to download the RPM bundle tar file instead, which contains all the RPM packages listed
above, so that you need not download them separately.

In most cases, you need to install the mysql-community-server, mysql-community-client,
mysql-community-client-plugins, mysql-community-libs, mysql-community-icu-data-
files, mysql-community-common, and mysql-community-libs-compat packages to get a
functional, standard MySQL installation. To perform such a standard, basic installation, go to the folder that
contains all those packages (and, preferably, no other RPM packages with similar names), and issue the
following command:

$> sudo yum install mysql-community-{server,client,client-plugins,icu-data-files,common,libs}-*

Replace yum with zypper for SLES, and with dnf for Fedora.

While it is much preferable to use a high-level package management tool like yum to install the packages,
users who prefer direct rpm commands can replace the yum install command with the rpm -Uvh
command; however, using rpm -Uvh instead makes the installation process more prone to failure, due to
potential dependency issues the installation process might run into.

To install only the client programs, you can skip mysql-community-server in your list of packages to
install; issue the following command:

$> sudo yum install mysql-community-{client,client-plugins,common,libs}-*

Replace yum with zypper for SLES, and with dnf for Fedora.

A standard installation of MySQL using the RPM packages result in files and resources created under the
system directories, shown in the following table.

Table 2.5 MySQL Installation Layout for Linux RPM Packages from the MySQL Developer Zone

Files or Resources Location

Client programs and scripts /usr/bin

mysqld server /usr/sbin

Configuration file /etc/my.cnf

Data directory /var/lib/mysql

Error log file For RHEL, Oracle Linux, CentOS or Fedora
platforms: /var/log/mysqld.log

For SLES: /var/log/mysql/mysqld.log

Value of secure_file_priv /var/lib/mysql-files

13

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv

MySQL RPM Packages

Files or Resources Location

System V init script For RHEL, Oracle Linux, CentOS or Fedora
platforms: /etc/init.d/mysqld

For SLES: /etc/init.d/mysql

Systemd service For RHEL, Oracle Linux, CentOS or Fedora
platforms: mysqld

For SLES: mysql

Pid file /var/run/mysql/mysqld.pid

Socket /var/lib/mysql/mysql.sock

Keyring directory /var/lib/mysql-keyring

Unix manual pages /usr/share/man

Include (header) files /usr/include/mysql

Libraries /usr/lib/mysql

Miscellaneous support files (for example, error
messages, and character set files)

/usr/share/mysql

The installation also creates a user named mysql and a group named mysql on the system.

Notes

• The mysql user is created using the -r and -s /bin/false options of the
useradd command, so that it does not have login permissions to your server
host (see Creating the mysql User and Group for details). To switch to the mysql
user on your OS, use the --shell=/bin/bash option for the su command:

su - mysql --shell=/bin/bash

• Installation of previous versions of MySQL using older packages might have
created a configuration file named /usr/my.cnf. It is highly recommended that
you examine the contents of the file and migrate the desired settings inside to the
file /etc/my.cnf file, then remove /usr/my.cnf.

MySQL is NOT automatically started at the end of the installation process. For Red Hat Enterprise Linux,
Oracle Linux, CentOS, and Fedora systems, use the following command to start MySQL:

$> systemctl start mysqld

For SLES systems, the command is the same, but the service name is different:

$> systemctl start mysql

If the operating system is systemd enabled, standard systemctl (or alternatively, service with the
arguments reversed) commands such as stop, start, status, and restart should be used to manage
the MySQL server service. The mysqld service is enabled by default, and it starts at system reboot. Notice
that certain things might work differently on systemd platforms: for example, changing the location of the
data directory might cause issues. See Section 2.9, “Managing MySQL Server with systemd” for additional
information.

During an upgrade installation using RPM and DEB packages, if the MySQL server is running when
the upgrade occurs then the MySQL server is stopped, the upgrade occurs, and the MySQL server
is restarted. One exception: if the edition also changes during an upgrade (such as community to
commercial, or vice-versa), then MySQL server is not restarted.

14

https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/secure-deployment-install.html#secure-deployment-mysql-user

MySQL RPM Packages

At the initial start up of the server, the following happens, given that the data directory of the server is
empty:

• The server is initialized.

• An SSL certificate and key files are generated in the data directory.

• validate_password is installed and enabled.

• A superuser account 'root'@'localhost' is created. A password for the superuser is set and stored
in the error log file. To reveal it, use the following command for RHEL, Oracle Linux, CentOS, and
Fedora systems:

$> sudo grep 'temporary password' /var/log/mysqld.log

Use the following command for SLES systems:

$> sudo grep 'temporary password' /var/log/mysql/mysqld.log

The next step is to log in with the generated, temporary password and set a custom password for the
superuser account:

$> mysql -uroot -p

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'MyNewPass4!';

Note

validate_password is installed by default. The default password policy
implemented by validate_password requires that passwords contain at least
one uppercase letter, one lowercase letter, one digit, and one special character,
and that the total password length is at least 8 characters.

If something goes wrong during installation, you might find debug information in the error log file /var/
log/mysqld.log.

For some Linux distributions, it might be necessary to increase the limit on number of file descriptors
available to mysqld. See File Not Found and Similar Errors

Installing Client Libraries from Multiple MySQL Versions. It is possible to install multiple client library
versions, such as for the case that you want to maintain compatibility with older applications linked against
previous libraries. To install an older client library, use the --oldpackage option with rpm. For example,
to install mysql-community-libs-5.5 on an EL6 system that has libmysqlclient.21 from MySQL
8.0, use a command like this:

$> rpm --oldpackage -ivh mysql-community-libs-5.5.50-2.el6.x86_64.rpm

Debug Package. A special variant of MySQL Server compiled with the debug package has been
included in the server RPM packages. It performs debugging and memory allocation checks and produces
a trace file when the server is running. To use that debug version, start MySQL with /usr/sbin/mysqld-
debug, instead of starting it as a service or with /usr/sbin/mysqld. See The DBUG Package for the
debug options you can use.

Note

The default plugin directory for debug builds changed from /usr/lib64/mysql/
plugin to /usr/lib64/mysql/plugin/debug in MySQL 8.0.4. Previously, it
was necessary to change plugin_dir to /usr/lib64/mysql/plugin/debug
for debug builds.

15

https://dev.mysql.com/doc/refman/8.0/en/validate-password.html
https://dev.mysql.com/doc/refman/8.0/en/validate-password.html
https://dev.mysql.com/doc/refman/8.0/en/not-enough-file-handles.html
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Installing MySQL on Linux Using Debian Packages from Oracle

Rebuilding RPMs from source SRPMs. Source code SRPM packages for MySQL are available for
download. They can be used as-is to rebuild the MySQL RPMs with the standard rpmbuild tool chain.

2.5 Installing MySQL on Linux Using Debian Packages from Oracle
Oracle provides Debian packages for installing MySQL on Debian or Debian-like Linux systems. The
packages are available through two different channels:

• The MySQL APT Repository. This is the preferred method for installing MySQL on Debian-like systems,
as it provides a simple and convenient way to install and update MySQL products. For details, see
Section 2.2, “Installing MySQL on Linux Using the MySQL APT Repository”.

• The MySQL Developer Zone's Download Area. For details, see How to Get MySQL. The following are
some information on the Debian packages available there and the instructions for installing them:

• Various Debian packages are provided in the MySQL Developer Zone for installing different
components of MySQL on the current Debian and Ubuntu platforms. The preferred method is to use
the tarball bundle, which contains the packages needed for a basic setup of MySQL. The tarball
bundles have names in the format of mysql-server_MVER-DVER_CPU.deb-bundle.tar. MVER is
the MySQL version and DVER is the Linux distribution version. The CPU value indicates the processor
type or family for which the package is built, as shown in the following table:

Table 2.6 MySQL Debian and Ubuntu Installation Packages CPU Identifiers

CPU Value Intended Processor Type or Family

i386 Pentium processor or better, 32 bit

amd64 64-bit x86 processor

• After downloading the tarball, unpack it with the following command:

$> tar -xvf mysql-server_MVER-DVER_CPU.deb-bundle.tar

• You may need to install the libaio library if it is not already present on your system:

$> sudo apt-get install libaio1

• Preconfigure the MySQL server package with the following command:

$> sudo dpkg-preconfigure mysql-community-server_*.deb

You are asked to provide a password for the root user for your MySQL installation. You might also be
asked other questions regarding the installation.

Important

Make sure you remember the root password you set. Users who want to set
a password later can leave the password field blank in the dialogue box
and just press OK; in that case, root access to the server is authenticated
using the MySQL Socket Peer-Credential Authentication Plugin for
connections using a Unix socket file. You can set the root password later using
mysql_secure_installation.

• For a basic installation of the MySQL server, install the database common files package, the client
package, the client metapackage, the server package, and the server metapackage (in that order); you
can do that with a single command:

$> sudo dpkg -i mysql-{common,community-client-plugins,community-client-core,community-client,client,community-server-core,community-server,server}_*.deb

16

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/getting-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/socket-pluggable-authentication.html

Deploying MySQL on Linux with Docker Containers

There are also packages with server-core and client-core in the package names. These
contain binaries only and are installed automatically by the standard packages. Installing them by
themselves does not result in a functioning MySQL setup.

If you are being warned of unmet dependencies by dpkg (such as libmecab2), you can fix them using
apt-get:

sudo apt-get -f install

Here are where the files are installed on the system:

• All configuration files (like my.cnf) are under /etc/mysql

• All binaries, libraries, headers, etc., are under /usr/bin and /usr/sbin

• The data directory is under /var/lib/mysql

Note

Debian distributions of MySQL are also provided by other vendors. Be aware that
they may differ from those built by Oracle in features, capabilities, and conventions
(including communication setup), and that the instructions in this manual do not
necessarily apply to installing them. The vendor's instructions should be consulted
instead.

2.6 Deploying MySQL on Linux with Docker Containers
This section explains how to deploy MySQL Server using Docker containers.

While the docker client is used in the following instructions for demonstration purposes, in general, the
MySQL container images provided by Oracle work with any container tools that are compliant with the OCI
1.0 specification.

Warning

Before deploying MySQL with Docker containers, make sure you understand the
security risks of running containers and mitigate them properly.

2.6.1 Basic Steps for MySQL Server Deployment with Docker

Warning

The MySQL Docker images maintained by the MySQL team are built specifically for
Linux platforms. Other platforms are not supported, and users using these MySQL
Docker images on them are doing so at their own risk. See the discussion here
for some known limitations for running these containers on non-Linux operating
systems.

• Downloading a MySQL Server Docker Image

• Starting a MySQL Server Instance

• Connecting to MySQL Server from within the Container

• Container Shell Access

• Stopping and Deleting a MySQL Container

17

https://opencontainers.org/posts/announcements/2021-05-04-oci-dist-spec-v1/
https://opencontainers.org/posts/announcements/2021-05-04-oci-dist-spec-v1/

Basic Steps for MySQL Server Deployment with Docker

• Upgrading a MySQL Server Container

• More Topics on Deploying MySQL Server with Docker

Downloading a MySQL Server Docker Image

Important

For users of MySQL Enterprise Edition: A subscription is required to use the Docker
images for MySQL Enterprise Edition. Subscriptions work by a Bring Your Own
License model; see How to Buy MySQL Products and Services for details.

Downloading the server image in a separate step is not strictly necessary; however, performing this step
before you create your Docker container ensures your local image is up to date. To download the MySQL
Community Edition image from the Oracle Container Registry (OCR), run this command:

docker pull container-registry.oracle.com/mysql/community-server:tag

The tag is the label for the image version you want to pull (for example, 5.7, 8.0, or latest). If :tag is
omitted, the latest label is used, and the image for the latest GA version of MySQL Community Server is
downloaded.

To download the MySQL Enterprise Edition image from the OCR, you need to first accept the license
agreement on the OCR and log in to the container repository with your Docker client. Follow these steps:

• Visit the OCR at https://container-registry.oracle.com/ and choose MySQL.

• Under the list of MySQL repositories, choose enterprise-server.

• If you have not signed in to the OCR yet, click the Sign in button on the right of the page, and then enter
your Oracle account credentials when prompted to.

• Follow the instructions on the right of the page to accept the license agreement.

• Log in to the OCR with your container client using, for example, the docker login command:

docker login container-registry.oracle.com
Username: Oracle-Account-ID
Password: password
Login successful.

Download the Docker image for MySQL Enterprise Edition from the OCR with this command:

docker pull container-registry.oracle.com/mysql/enterprise-server:tag

To download the MySQL Enterprise Edition image from My Oracle Support website, go onto the website,
sign in to your Oracle account, and perform these steps once you are on the landing page:

• Select the Patches and Updates tab.

• Go to the Patch Search region and, on the Search tab, switch to the Product or Family (Advanced)
subtab.

• Enter “MySQL Server” for the Product field, and the desired version number in the Release field.

• Use the dropdowns for additional filters to select Description—contains, and enter “Docker” in the text
field.

The following figure shows the search settings for the MySQL Enterprise Edition image for MySQL
Server 8.0:

18

https://www.mysql.com/buy-mysql/
https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://support.oracle.com/

Basic Steps for MySQL Server Deployment with Docker

• Click the Search button and, from the result list, select the version you want, and click the Download
button.

• In the File Download dialogue box that appears, click and download the .zip file for the Docker image.

Unzip the downloaded .zip archive to obtain the tarball inside (mysql-enterprise-
server-version.tar), and then load the image by running this command:

docker load -i mysql-enterprise-server-version.tar

You can list downloaded Docker images with this command:

$> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
container-registry.oracle.com/mysql/community-server latest 1d9c2219ff69 2 months ago 496MB

Starting a MySQL Server Instance

To start a new Docker container for a MySQL Server, use the following command:

docker run --name=container_name --restart on-failure -d image_name:tag

image_name is the name of the image to be used to start the container; see Downloading a MySQL
Server Docker Image for more information.

The --name option, for supplying a custom name for your server container, is optional; if no container
name is supplied, a random one is generated.

The --restart option is for configuring the restart policy for your container; it should be set to the value
on-failure, to enable support for server restart within a client session (which happens, for example,
when the RESTART statement is executed by a client or during the configuration of an InnoDB cluster
instance). With the support for restart enabled, issuing a restart within a client session causes the server
and the container to stop and then restart. Support for server restart is available for MySQL 8.0.21 and
later.

For example, to start a new Docker container for the MySQL Community Server, use this command:

docker run --name=mysql1 --restart on-failure -d container-registry.oracle.com/mysql/community-server:latest

To start a new Docker container for the MySQL Enterprise Server with a Docker image downloaded from
the OCR, use this command:

docker run --name=mysql1 --restart on-failure -d container-registry.oracle.com/mysql/enterprise-server:latest

To start a new Docker container for the MySQL Enterprise Server with a Docker image downloaded from
My Oracle Support, use this command:

docker run --name=mysql1 --restart on-failure -d mysql/enterprise-server:latest

19

https://docs.docker.com/config/containers/start-containers-automatically/
https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-production-instances.html#configuring-local-instances
https://dev.mysql.com/doc/mysql-shell/8.0/en/configuring-production-instances.html#configuring-local-instances

Basic Steps for MySQL Server Deployment with Docker

If the Docker image of the specified name and tag has not been downloaded by an earlier docker pull
or docker run command, the image is now downloaded. Initialization for the container begins, and the
container appears in the list of running containers when you run the docker ps command. For example:

$> docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4cd4129b3211 container-registry.oracle.com/mysql/community-server:latest "/entrypoint.sh mysq…" 8 seconds ago Up 7 seconds (health: starting) 3306/tcp, 33060-33061/tcp mysql1

The container initialization might take some time. When the server is ready for use, the STATUS of
the container in the output of the docker ps command changes from (health: starting) to
(healthy).

The -d option used in the docker run command above makes the container run in the background. Use
this command to monitor the output from the container:

docker logs mysql1

Once initialization is finished, the command's output is going to contain the random password generated for
the root user; check the password with, for example, this command:

$> docker logs mysql1 2>&1 | grep GENERATED
GENERATED ROOT PASSWORD: Axegh3kAJyDLaRuBemecis&EShOs

Connecting to MySQL Server from within the Container

Once the server is ready, you can run the mysql client within the MySQL Server container you just started,
and connect it to the MySQL Server. Use the docker exec -it command to start a mysql client inside
the Docker container you have started, like the following:

docker exec -it mysql1 mysql -uroot -p

When asked, enter the generated root password (see the last step in Starting a MySQL Server Instance
above on how to find the password). Because the MYSQL_ONETIME_PASSWORD option is true by default,
after you have connected a mysql client to the server, you must reset the server root password by issuing
this statement:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'password';

Substitute password with the password of your choice. Once the password is reset, the server is ready for
use.

Container Shell Access

To have shell access to your MySQL Server container, use the docker exec -it command to start a
bash shell inside the container:

$> docker exec -it mysql1 bash
bash-4.2#

You can then run Linux commands inside the container. For example, to view contents in the server's data
directory inside the container, use this command:

bash-4.2# ls /var/lib/mysql
auto.cnf ca.pem client-key.pem ib_logfile0 ibdata1 mysql mysql.sock.lock private_key.pem server-cert.pem sys
ca-key.pem client-cert.pem ib_buffer_pool ib_logfile1 ibtmp1 mysql.sock performance_schema public_key.pem server-key.pem

Stopping and Deleting a MySQL Container

To stop the MySQL Server container we have created, use this command:

docker stop mysql1

20

Basic Steps for MySQL Server Deployment with Docker

docker stop sends a SIGTERM signal to the mysqld process, so that the server is shut down
gracefully.

Also notice that when the main process of a container (mysqld in the case of a MySQL Server container)
is stopped, the Docker container stops automatically.

To start the MySQL Server container again:

docker start mysql1

To stop and start again the MySQL Server container with a single command:

docker restart mysql1

To delete the MySQL container, stop it first, and then use the docker rm command:

docker stop mysql1

docker rm mysql1

If you want the Docker volume for the server's data directory to be deleted at the same time, add the -v
option to the docker rm command.

Upgrading a MySQL Server Container

Important

• Before performing any upgrade to MySQL, follow carefully the instructions in
Upgrading MySQL. Among other instructions discussed there, it is especially
important to back up your database before the upgrade.

• The instructions in this section require that the server's data and configuration
have been persisted on the host. See Persisting Data and Configuration Changes
for details.

Follow these steps to upgrade a Docker installation of MySQL 5.7 to 8.0:

• Stop the MySQL 5.7 server (container name is mysql57 in this example):

docker stop mysql57

• Download the MySQL 8.0 Server Docker image. See instructions in Downloading a MySQL Server
Docker Image. Make sure you use the right tag for MySQL 8.0.

• Start a new MySQL 8.0 Docker container (named mysql80 in this example) with the old server data and
configuration (with proper modifications if needed—see Upgrading MySQL) that have been persisted on
the host (by bind-mounting in this example). For the MySQL Community Server, run this command:

docker run --name=mysql80 \
 --mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
 --mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
 -d container-registry.oracle.com/mysql/community-server:8.0

If needed, adjust container-registry.oracle.com/mysql/community-server to the
correct image name—for example, replace it with container-registry.oracle.com/mysql/
enterprise-server for MySQL Enterprise Edition images downloaded from the OCR, or mysql/
enterprise-server for MySQL Enterprise Edition images downloaded from My Oracle Support.

• Wait for the server to finish startup. You can check the status of the server using the docker ps
command (see Starting a MySQL Server Instance for how to do that).

21

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://docs.docker.com/engine/reference/commandline/service_create/#add-bind-mounts-or-volumes

More Topics on Deploying MySQL Server with Docker

Follow the same steps for upgrading within the 8.0 series (that is, from release 8.0.x to 8.0.y): stop the
original container, and start a new one with a newer image on the old server data and configuration. If you
used the 8.0 or the latest tag when starting your original container and there is now a new MySQL 8.0
release you want to upgrade to it, you must first pull the image for the new release with the command:

docker pull container-registry.oracle.com/mysql/community-server:8.0

You can then upgrade by starting a new container with the same tag on the old data and configuration
(adjust the image name if you are using the MySQL Enterprise Edition; see Downloading a MySQL Server
Docker Image):

docker run --name=mysql80new \
 --mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
 --mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
 -d container-registry.oracle.com/mysql/community-server:8.0

Note

For MySQL 8.0.15 and earlier: You need to complete the upgrade process by
running the mysql_upgrade utility in the MySQL 8.0 Server container (the step is not
required for MySQL 8.0.16 and later):

• docker exec -it mysql80 mysql_upgrade -uroot -p

When prompted, enter the root password for your old server.

• Finish the upgrade by restarting the new container:

docker restart mysql80

More Topics on Deploying MySQL Server with Docker

For more topics on deploying MySQL Server with Docker like server configuration, persisting data and
configuration, server error log, and container environment variables, see Section 2.6.2, “More Topics on
Deploying MySQL Server with Docker”.

2.6.2 More Topics on Deploying MySQL Server with Docker

Note

Most of the following sample commands have container-
registry.oracle.com/mysql/community-server as the Docker image
being used (like with the docker pull and docker run commands); change that
if your image is from another repository—for example, replace it with container-
registry.oracle.com/mysql/enterprise-server for MySQL Enterprise
Edition images downloaded from the Oracle Container Registry (OCR), or mysql/
enterprise-server for MySQL Enterprise Edition images downloaded from My
Oracle Support.

• The Optimized MySQL Installation for Docker

• Configuring the MySQL Server

• Persisting Data and Configuration Changes

• Running Additional Initialization Scripts

• Connect to MySQL from an Application in Another Docker Container

• Server Error Log

22

https://dev.mysql.com/doc/refman/8.0/en/mysql-upgrade.html
https://support.oracle.com/
https://support.oracle.com/

More Topics on Deploying MySQL Server with Docker

• Using MySQL Enterprise Backup with Docker

• Using mysqldump with Docker

• Known Issues

• Docker Environment Variables

The Optimized MySQL Installation for Docker

Docker images for MySQL are optimized for code size, which means they only include crucial components
that are expected to be relevant for the majority of users who run MySQL instances in Docker containers. A
MySQL Docker installation is different from a common, non-Docker installation in the following aspects:

• Only a limited number of binaries are included.

• All binaries are stripped; they contain no debug information.

Warning

Any software updates or installations users perform to the Docker container
(including those for MySQL components) may conflict with the optimized MySQL
installation created by the Docker image. Oracle does not provide support for
MySQL products running in such an altered container, or a container created from
an altered Docker image.

Configuring the MySQL Server

When you start the MySQL Docker container, you can pass configuration options to the server through the
docker run command. For example:

docker run --name mysql1 -d container-registry.oracle.com/mysql/community-server:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_col

The command starts the MySQL Server with utf8mb4 as the default character set and utf8mb4_col as
the default collation for databases.

Another way to configure the MySQL Server is to prepare a configuration file and mount it at the location
of the server configuration file inside the container. See Persisting Data and Configuration Changes for
details.

Persisting Data and Configuration Changes

Docker containers are in principle ephemeral, and any data or configuration are expected to be lost if
the container is deleted or corrupted (see discussions here). Docker volumes provides a mechanism to
persist data created inside a Docker container. At its initialization, the MySQL Server container creates a
Docker volume for the server data directory. The JSON output from the docker inspect command on
the container includes a Mount key, whose value provides information on the data directory volume:

$> docker inspect mysql1
...
 "Mounts": [
 {
 "Type": "volume",
 "Name": "4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652",
 "Source": "/var/lib/docker/volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/_data",
 "Destination": "/var/lib/mysql",
 "Driver": "local",
 "Mode": "",
 "RW": true,
 "Propagation": ""

23

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/admin/volumes/volumes/

More Topics on Deploying MySQL Server with Docker

 }
],
...

The output shows that the source directory /var/lib/docker/
volumes/4f2d463cfc4bdd4baebcb098c97d7da3337195ed2c6572bc0b89f7e845d27652/_data,
in which data is persisted on the host, has been mounted at /var/lib/mysql, the server data directory
inside the container.

Another way to preserve data is to bind-mount a host directory using the --mount option when creating
the container. The same technique can be used to persist the configuration of the server. The following
command creates a MySQL Server container and bind-mounts both the data directory and the server
configuration file:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/my.cnf,dst=/etc/my.cnf \
--mount type=bind,src=/path-on-host-machine/datadir,dst=/var/lib/mysql \
-d container-registry.oracle.com/mysql/community-server:tag

The command mounts path-on-host-machine/my.cnf at /etc/my.cnf (the server configuration file
inside the container), and path-on-host-machine/datadir at /var/lib/mysql (the data directory
inside the container). The following conditions must be met for the bind-mounting to work:

• The configuration file path-on-host-machine/my.cnf must already exist, and it must contain the
specification for starting the server by the user mysql:

[mysqld]
user=mysql

You can also include other server configuration options in the file.

• The data directory path-on-host-machine/datadir must already exist. For server initialization
to happen, the directory must be empty. You can also mount a directory prepopulated with data and
start the server with it; however, you must make sure you start the Docker container with the same
configuration as the server that created the data, and any host files or directories required are mounted
when starting the container.

Running Additional Initialization Scripts

If there are any .sh or .sql scripts you want to run on the database immediately after it has been
created, you can put them into a host directory and then mount the directory at /docker-entrypoint-
initdb.d/ inside the container. For example:

docker run --name=mysql1 \
--mount type=bind,src=/path-on-host-machine/scripts/,dst=/docker-entrypoint-initdb.d/ \
-d container-registry.oracle.com/mysql/community-server:tag

Connect to MySQL from an Application in Another Docker Container

By setting up a Docker network, you can allow multiple Docker containers to communicate with each
other, so that a client application in another Docker container can access the MySQL Server in the server
container. First, create a Docker network:

docker network create my-custom-net

Then, when you are creating and starting the server and the client containers, use the --network option
to put them on network you created. For example:

docker run --name=mysql1 --network=my-custom-net -d container-registry.oracle.com/mysql/community-server

docker run --name=myapp1 --network=my-custom-net -d myapp

24

https://docs.docker.com/engine/reference/commandline/service_create/#add-bind-mounts-volumes-or-memory-filesystems

More Topics on Deploying MySQL Server with Docker

The myapp1 container can then connect to the mysql1 container with the mysql1 hostname and vice
versa, as Docker automatically sets up a DNS for the given container names. In the following example, we
run the mysql client from inside the myapp1 container to connect to host mysql1 in its own container:

docker exec -it myapp1 mysql --host=mysql1 --user=myuser --password

For other networking techniques for containers, see the Docker container networking section in the Docker
Documentation.

Server Error Log

When the MySQL Server is first started with your server container, a server error log is NOT generated if
either of the following conditions is true:

• A server configuration file from the host has been mounted, but the file does not contain the system
variable log_error (see Persisting Data and Configuration Changes on bind-mounting a server
configuration file).

• A server configuration file from the host has not been mounted, but the Docker environment variable
MYSQL_LOG_CONSOLE is true (which is the variable's default state for MySQL 8.0 server containers).
The MySQL Server's error log is then redirected to stderr, so that the error log goes into the Docker
container's log and is viewable using the docker logs mysqld-container command.

To make MySQL Server generate an error log when either of the two conditions is true, use the --log-
error option to configure the server to generate the error log at a specific location inside the container.
To persist the error log, mount a host file at the location of the error log inside the container as explained in
Persisting Data and Configuration Changes. However, you must make sure your MySQL Server inside its
container has write access to the mounted host file.

Using MySQL Enterprise Backup with Docker

MySQL Enterprise Backup is a commercially-licensed backup utility for MySQL Server, available with
MySQL Enterprise Edition. MySQL Enterprise Backup is included in the Docker installation of MySQL
Enterprise Edition.

In the following example, we assume that you already have a MySQL Server running in a Docker container
(see Section 2.6.1, “Basic Steps for MySQL Server Deployment with Docker” on how to start a MySQL
Server instance with Docker). For MySQL Enterprise Backup to back up the MySQL Server, it must have
access to the server's data directory. This can be achieved by, for example, bind-mounting a host directory
on the data directory of the MySQL Server when you start the server:

docker run --name=mysqlserver \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
-d mysql/enterprise-server:8.0

With this command, the MySQL Server is started with a Docker image of the MySQL Enterprise Edition,
and the host directory /path-on-host-machine/datadir/ has been mounted onto the server's data
directory (/var/lib/mysql) inside the server container. We also assume that, after the server has been
started, the required privileges have also been set up for MySQL Enterprise Backup to access the server
(see Grant MySQL Privileges to Backup Administrator, for details). Use the following steps to back up and
restore a MySQL Server instance.

To back up a MySQL Server instance running in a Docker container using MySQL Enterprise Backup with
Docker, follow the steps listed here:

1. On the same host where the MySQL Server container is running, start another container with an image
of MySQL Enterprise Edition to perform a back up with the MySQL Enterprise Backup command
backup-to-image. Provide access to the server's data directory using the bind mount we created in

25

https://docs.docker.com/engine/userguide/networking/
https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-error
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-error
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/
https://www.mysql.com/products/enterprise/
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/mysqlbackup.privileges.html
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/backup-commands-backup.html#option_meb_backup-to-image

More Topics on Deploying MySQL Server with Docker

the last step. Also, mount a host directory (/path-on-host-machine/backups/ in this example)
onto the storage folder for backups in the container (/data/backups in the example) to persist the
backups we are creating. Here is a sample command for this step, in which MySQL Enterprise Backup
is started with a Docker image downloaded from My Oracle Support:

$> docker run \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm mysql/enterprise-server:8.0 \
mysqlbackup -umysqlbackup -ppassword --backup-dir=/tmp/backup-tmp --with-timestamp \
--backup-image=/data/backups/db.mbi backup-to-image
[Entrypoint] MySQL Docker Image 8.0.11-1.1.5
MySQL Enterprise Backup version 8.0.11 Linux-4.1.12-61.1.16.el7uek.x86_64-x86_64 [2018-04-08 07:06:45]
Copyright (c) 2003, 2018, Oracle and/or its affiliates. All Rights Reserved.
180921 17:27:25 MAIN INFO: A thread created with Id '140594390935680'
180921 17:27:25 MAIN INFO: Starting with following command line ...
...

 Parameters Summary

 Start LSN : 29615616
 End LSN : 29651854

mysqlbackup completed OK!

It is important to check the end of the output by mysqlbackup to make sure the backup has been
completed successfully.

2. The container exits once the backup job is finished and, with the --rm option used to start it, it is
removed after it exits. An image backup has been created, and can be found in the host directory
mounted in the last step for storing backups, as shown here:

$> ls /tmp/backups
db.mbi

To restore a MySQL Server instance in a Docker container using MySQL Enterprise Backup with Docker,
follow the steps listed here:

1. Stop the MySQL Server container, which also stops the MySQL Server running inside:

docker stop mysqlserver

2. On the host, delete all contents in the bind mount for the MySQL Server data directory:

rm -rf /path-on-host-machine/datadir/*

3. Start a container with an image of MySQL Enterprise Edition to perform the restore with the MySQL
Enterprise Backup command copy-back-and-apply-log. Bind-mount the server's data directory
and the storage folder for the backups, like what we did when we backed up the server:

$> docker run \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm mysql/enterprise-server:8.0 \
mysqlbackup --backup-dir=/tmp/backup-tmp --with-timestamp \
--datadir=/var/lib/mysql --backup-image=/data/backups/db.mbi copy-back-and-apply-log
[Entrypoint] MySQL Docker Image 8.0.11-1.1.5
MySQL Enterprise Backup version 8.0.11 Linux-4.1.12-61.1.16.el7uek.x86_64-x86_64 [2018-04-08 07:06:45]
Copyright (c) 2003, 2018, Oracle and/or its affiliates. All Rights Reserved.
180921 22:06:52 MAIN INFO: A thread created with Id '139768047519872'
180921 22:06:52 MAIN INFO: Starting with following command line ...
...
180921 22:06:52 PCR1 INFO: We were able to parse ibbackup_logfile up to

26

https://support.oracle.com/
https://dev.mysql.com/doc/mysql-enterprise-backup/8.0/en/backup-commands-restore.html#option_meb_copy-back-and-apply-log

More Topics on Deploying MySQL Server with Docker

 lsn 29680612.
180921 22:06:52 PCR1 INFO: Last MySQL binlog file position 0 155, file name binlog.000003
180921 22:06:52 PCR1 INFO: The first data file is '/var/lib/mysql/ibdata1'
 and the new created log files are at '/var/lib/mysql'
180921 22:06:52 MAIN INFO: No Keyring file to process.
180921 22:06:52 MAIN INFO: Apply-log operation completed successfully.
180921 22:06:52 MAIN INFO: Full Backup has been restored successfully.
mysqlbackup completed OK! with 3 warnings

The container exits once the backup job is finished and, with the --rm option used when starting it, it is
removed after it exits.

4. Restart the server container, which also restarts the restored server, using the following command:

docker restart mysqlserver

Or, start a new MySQL Server on the restored data directory, as shown here:

docker run --name=mysqlserver2 \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
-d mysql/enterprise-server:8.0

Log on to the server to check that the server is running with the restored data.

Using mysqldump with Docker

Besides using MySQL Enterprise Backup to back up a MySQL Server running in a Docker container, you
can perform a logical backup of your server by using the mysqldump utility, run inside a Docker container.

The following instructions assume that you already have a MySQL Server running in a Docker container
and, when the container was first started, a host directory /path-on-host-machine/datadir/ has
been mounted onto the server's data directory /var/lib/mysql (see bind-mounting a host directory
on the data directory of the MySQL Server for details), which contains the Unix socket file by which
mysqldump and mysql can connect to the server. We also assume that, after the server has been started,
a user with the proper privileges (admin in this example) has been created, with which mysqldump can
access the server. Use the following steps to back up and restore MySQL Server data:

Backing up MySQL Server data using mysqldump with Docker:

1. On the same host where the MySQL Server container is running, start another container with an image
of MySQL Server to perform a backup with the mysqldump utility (see documentation of the utility for
its functionality, options, and limitations). Provide access to the server's data directory by bind mounting
/path-on-host-machine/datadir/. Also, mount a host directory (/path-on-host-machine/
backups/ in this example) onto a storage folder for backups inside the container (/data/backups is
used in this example) to persist the backups you are creating. Here is a sample command for backing
up all databases on the server using this setup:

$> docker run --entrypoint "/bin/sh" \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm container-registry.oracle.com/mysql/community-server:8.0 \
-c "mysqldump -uadmin --password='password' --all-databases > /data/backups/all-databases.sql"

In the command, the --entrypoint option is used so that the system shell is invoked after the
container is started, and the -c option is used to specify the mysqldump command to be run in the
shell, whose output is redirected to the file all-databases.sql in the backup directory.

2. The container exits once the backup job is finished and, with the --rm option used to start it, it is
removed after it exits. A logical backup been created, and can be found in the host directory mounted
for storing the backup, as shown here:

27

More Topics on Deploying MySQL Server with Docker

$> ls /path-on-host-machine/backups/
all-databases.sql

Restoring MySQL Server data using mysqldump with Docker:

1. Make sure you have a MySQL Server running in a container, onto which you want your backed-up data
to be restored.

2. Start a container with an image of MySQL Server to perform the restore with a mysql client. Bind-
mount the server's data directory, as well as the storage folder that contains your backup:

$> docker run \
--mount type=bind,src=/path-on-host-machine/datadir/,dst=/var/lib/mysql \
--mount type=bind,src=/path-on-host-machine/backups/,dst=/data/backups \
--rm container-registry.oracle.com/mysql/community-server:8.0 \
mysql -uadmin --password='password' -e "source /data/backups/all-databases.sql"

The container exits once the backup job is finished and, with the --rm option used when starting it, it is
removed after it exits.

3. Log on to the server to check that the restored data is now on the server.

Known Issues

• When using the server system variable audit_log_file to configure the audit log file name, use the
loose option modifier with it; otherwise, Docker cannot start the server.

Docker Environment Variables

When you create a MySQL Server container, you can configure the MySQL instance by using the --
env option (short form -e) and specifying one or more environment variables. No server initialization is
performed if the mounted data directory is not empty, in which case setting any of these variables has no
effect (see Persisting Data and Configuration Changes), and no existing contents of the directory, including
server settings, are modified during container startup.

Environment variables which can be used to configure a MySQL instance are listed here:

• The boolean variables including MYSQL_RANDOM_ROOT_PASSWORD, MYSQL_ONETIME_PASSWORD,
MYSQL_ALLOW_EMPTY_PASSWORD, and MYSQL_LOG_CONSOLE are made true by setting them with any
strings of nonzero lengths. Therefore, setting them to, for example, “0”, “false”, or “no” does not make
them false, but actually makes them true. This is a known issue.

• MYSQL_RANDOM_ROOT_PASSWORD: When this variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD is set or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), a random
password for the server's root user is generated when the Docker container is started. The password
is printed to stdout of the container and can be found by looking at the container’s log (see Starting a
MySQL Server Instance).

• MYSQL_ONETIME_PASSWORD: When the variable is true (which is its default state, unless
MYSQL_ROOT_PASSWORD is set or MYSQL_ALLOW_EMPTY_PASSWORD is set to true), the root user's
password is set as expired and must be changed before MySQL can be used normally.

• MYSQL_DATABASE: This variable allows you to specify the name of a database to be created on image
startup. If a user name and a password are supplied with MYSQL_USER and MYSQL_PASSWORD, the user
is created and granted superuser access to this database (corresponding to GRANT ALL). The specified
database is created by a CREATE DATABASE IF NOT EXIST statement, so that the variable has no
effect if the database already exists.

28

https://dev.mysql.com/doc/refman/8.0/en/audit-log-reference.html#sysvar_audit_log_file
https://dev.mysql.com/doc/refman/8.0/en/option-modifiers.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html

Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

• MYSQL_USER, MYSQL_PASSWORD: These variables are used in conjunction to create a user and set
that user's password, and the user is granted superuser permissions for the database specified by
the MYSQL_DATABASE variable. Both MYSQL_USER and MYSQL_PASSWORD are required for a user
to be created—if any of the two variables is not set, the other is ignored. If both variables are set but
MYSQL_DATABASE is not, the user is created without any privileges.

Note

There is no need to use this mechanism to create the root superuser,
which is created by default with the password set by either one of the
mechanisms discussed in the descriptions for MYSQL_ROOT_PASSWORD and
MYSQL_RANDOM_ROOT_PASSWORD, unless MYSQL_ALLOW_EMPTY_PASSWORD is
true.

• MYSQL_ROOT_HOST: By default, MySQL creates the 'root'@'localhost' account. This account
can only be connected to from inside the container as described in Connecting to MySQL Server from
within the Container. To allow root connections from other hosts, set this environment variable. For
example, the value 172.17.0.1, which is the default Docker gateway IP, allows connections from the
host machine that runs the container. The option accepts only one entry, but wildcards are allowed (for
example, MYSQL_ROOT_HOST=172.*.*.* or MYSQL_ROOT_HOST=%).

• MYSQL_LOG_CONSOLE: When the variable is true (which is its default state for MySQL 8.0 server
containers), the MySQL Server's error log is redirected to stderr, so that the error log goes into the
Docker container's log and is viewable using the docker logs mysqld-container command.

Note

The variable has no effect if a server configuration file from the host has been
mounted (see Persisting Data and Configuration Changes on bind-mounting a
configuration file).

• MYSQL_ROOT_PASSWORD: This variable specifies a password that is set for the MySQL root account.

Warning

Setting the MySQL root user password on the command line is insecure. As an
alternative to specifying the password explicitly, you can set the variable with a
container file path for a password file, and then mount a file from your host that
contains the password at the container file path. This is still not very secure, as
the location of the password file is still exposed. It is preferable to use the default
settings of MYSQL_RANDOM_ROOT_PASSWORD and MYSQL_ONETIME_PASSWORD
both being true.

• MYSQL_ALLOW_EMPTY_PASSWORD. Set it to true to allow the container to be started with a blank
password for the root user.

Warning

Setting this variable to true is insecure, because it is going to leave
your MySQL instance completely unprotected, allowing anyone to gain
complete superuser access. It is preferable to use the default settings of
MYSQL_RANDOM_ROOT_PASSWORD and MYSQL_ONETIME_PASSWORD both being
true.

2.6.3 Deploying MySQL on Windows and Other Non-Linux Platforms with
Docker

29

Installing MySQL on Linux from the Native Software Repositories

Warning

The MySQL Docker images provided by Oracle are built specifically for Linux
platforms. Other platforms are not supported, and users running the MySQL Docker
images from Oracle on them are doing so at their own risk. This section discusses
some known issues for the images when used on non-Linux platforms.

Known Issues for using the MySQL Server Docker images from Oracle on Windows include:

• If you are bind-mounting on the container's MySQL data directory (see Persisting Data and Configuration
Changes for details), you have to set the location of the server socket file with the --socket option to
somewhere outside of the MySQL data directory; otherwise, the server fails to start. This is because the
way Docker for Windows handles file mounting does not allow a host file from being bind-mounted on
the socket file.

2.7 Installing MySQL on Linux from the Native Software Repositories
Many Linux distributions include a version of the MySQL server, client tools, and development components
in their native software repositories and can be installed with the platforms' standard package management
systems. This section provides basic instructions for installing MySQL using those package management
systems.

Important

Native packages are often several versions behind the currently available release.
You are also normally unable to install development milestone releases (DMRs),
since these are not usually made available in the native repositories. Before
proceeding, we recommend that you check out the other installation options
described in Chapter 2, Installing MySQL on Linux.

Distribution specific instructions are shown below:

• Red Hat Linux, Fedora, CentOS

Note

For a number of Linux distributions, you can install MySQL using the MySQL
Yum repository instead of the platform's native software repository. See
Section 2.1, “Installing MySQL on Linux Using the MySQL Yum Repository” for
details.

For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate
packages, mysql for the client tools, mysql-server for the server and associated tools, and mysql-
libs for the libraries. The libraries are required if you want to provide connectivity from different
languages and environments such as Perl, Python and others.

To install, use the yum command to specify the packages that you want to install. For example:

#> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated

30

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_socket

Installing MySQL on Linux from the Native Software Repositories

--> Finished Dependency Resolution
Dependencies Resolved
==
 Package Arch Version Repository Size
==
Installing:
 mysql x86_64 5.1.48-2.fc13 updates 889 k
 mysql-libs x86_64 5.1.48-2.fc13 updates 1.2 M
 mysql-server x86_64 5.1.48-2.fc13 updates 8.1 M
Installing for dependencies:
 perl-DBD-MySQL x86_64 4.017-1.fc13 updates 136 k
Transaction Summary
==
Install 4 Package(s)
Upgrade 0 Package(s)
Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm | 889 kB 00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm | 8.1 MB 00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm | 136 kB 00:00
--
Total 201 kB/s | 10 MB 00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : mysql-libs-5.1.48-2.fc13.x86_64 1/4
 Installing : mysql-5.1.48-2.fc13.x86_64 2/4
 Installing : perl-DBD-MySQL-4.017-1.fc13.x86_64 3/4
 Installing : mysql-server-5.1.48-2.fc13.x86_64 4/4
Installed:
 mysql.x86_64 0:5.1.48-2.fc13 mysql-libs.x86_64 0:5.1.48-2.fc13
 mysql-server.x86_64 0:5.1.48-2.fc13
Dependency Installed:
 perl-DBD-MySQL.x86_64 0:4.017-1.fc13
Complete!

MySQL and the MySQL server should now be installed. A sample configuration file is installed into /
etc/my.cnf. To start the MySQL server use systemctl:

$> systemctl start mysqld

The database tables are automatically created for you, if they do not already exist. You should, however,
run mysql_secure_installation to set the root passwords on your server.

• Debian, Ubuntu, Kubuntu

Note

For supported Debian and Ubuntu versions, MySQL can be installed using the
MySQL APT Repository instead of the platform's native software repository. See
Section 2.2, “Installing MySQL on Linux Using the MySQL APT Repository” for
details.

On Debian and related distributions, there are two packages for MySQL in their software repositories,
mysql-client and mysql-server, for the client and server components respectively. You should

31

https://dev.mysql.com/downloads/repo/apt/

Installing MySQL on Linux with Juju

specify an explicit version, for example mysql-client-5.1, to ensure that you install the version of
MySQL that you want.

To download and install, including any dependencies, use the apt-get command, specifying the
packages that you want to install.

Note

Before installing, make sure that you update your apt-get index files to ensure
you are downloading the latest available version.

Note

The apt-get command installs a number of packages, including the MySQL
server, in order to provide the typical tools and application environment. This can
mean that you install a large number of packages in addition to the main MySQL
package.

During installation, the initial database is created, and you are prompted for the MySQL root password
(and confirmation). A configuration file is created in /etc/mysql/my.cnf. An init script is created in /
etc/init.d/mysql.

The server should already be started. You can manually start and stop the server using:

#> service mysql [start|stop]

The service is automatically added to the 2, 3 and 4 run levels, with stop scripts in the single, shutdown
and restart levels.

2.8 Installing MySQL on Linux with Juju

The Juju deployment framework supports easy installation and configuration of MySQL servers. For
instructions, see https://jujucharms.com/mysql/.

2.9 Managing MySQL Server with systemd

If you install MySQL using an RPM or Debian package on the following Linux platforms, server startup and
shutdown is managed by systemd:

• RPM package platforms:

• Enterprise Linux variants version 7 and higher

• SUSE Linux Enterprise Server 12 and higher

• Fedora 29 and higher

• Debian family platforms:

• Debian platforms

• Ubuntu platforms

If you install MySQL from a generic binary distribution on a platform that uses systemd, you can manually
configure systemd support for MySQL following the instructions provided in the post-installation setup
section of the MySQL Secure Deployment Guide.

32

https://jujucharms.com/mysql/
https://dev.mysql.com/doc/mysql-secure-deployment-guide/en/

Overview of systemd

If you install MySQL from a source distribution on a platform that uses systemd, obtain systemd support for
MySQL by configuring the distribution using the -DWITH_SYSTEMD=1 CMake option. See MySQL Source-
Configuration Options.

The following discussion covers these topics:

• Overview of systemd

• Configuring systemd for MySQL

• Configuring Multiple MySQL Instances Using systemd

• Migrating from mysqld_safe to systemd

Note

On platforms for which systemd support for MySQL is installed, scripts such as
mysqld_safe and the System V initialization script are unnecessary and are not
installed. For example, mysqld_safe can handle server restarts, but systemd
provides the same capability, and does so in a manner consistent with management
of other services rather than by using an application-specific program.

One implication of the non-use of mysqld_safe on platforms that use systemd for
server management is that use of [mysqld_safe] or [safe_mysqld] sections in
option files is not supported and might lead to unexpected behavior.

Because systemd has the capability of managing multiple MySQL instances on
platforms for which systemd support for MySQL is installed, mysqld_multi and
mysqld_multi.server are unnecessary and are not installed.

Overview of systemd

systemd provides automatic MySQL server startup and shutdown. It also enables manual server
management using the systemctl command. For example:

$> systemctl {start|stop|restart|status} mysqld

Alternatively, use the service command (with the arguments reversed), which is compatible with System
V systems:

$> service mysqld {start|stop|restart|status}

Note

For the systemctl command (and the alternative service command), if the
MySQL service name is not mysqld then use the appropriate name. For example,
use mysql rather than mysqld on Debian-based and SLES systems.

Support for systemd includes these files:

• mysqld.service (RPM platforms), mysql.service (Debian platforms): systemd service unit
configuration file, with details about the MySQL service.

• mysqld@.service (RPM platforms), mysql@.service (Debian platforms): Like mysqld.service or
mysql.service, but used for managing multiple MySQL instances.

• mysqld.tmpfiles.d: File containing information to support the tmpfiles feature. This file is installed
under the name mysql.conf.

33

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_systemd
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html

Configuring systemd for MySQL

• mysqld_pre_systemd (RPM platforms), mysql-system-start (Debian platforms): Support script
for the unit file. This script assists in creating the error log file only if the log location matches a pattern (/
var/log/mysql*.log for RPM platforms, /var/log/mysql/*.log for Debian platforms). In other
cases, the error log directory must be writable or the error log must be present and writable for the user
running the mysqld process.

Configuring systemd for MySQL

To add or change systemd options for MySQL, these methods are available:

• Use a localized systemd configuration file.

• Arrange for systemd to set environment variables for the MySQL server process.

• Set the MYSQLD_OPTS systemd variable.

To use a localized systemd configuration file, create the /etc/systemd/system/mysqld.service.d
directory if it does not exist. In that directory, create a file that contains a [Service] section listing the
desired settings. For example:

[Service]
LimitNOFILE=max_open_files
Nice=nice_level
LimitCore=core_file_limit
Environment="LD_PRELOAD=/path/to/malloc/library"
Environment="TZ=time_zone_setting"

The discussion here uses override.conf as the name of this file. Newer versions of systemd support
the following command, which opens an editor and permits you to edit the file:

systemctl edit mysqld # RPM platforms
systemctl edit mysql # Debian platforms

Whenever you create or change override.conf, reload the systemd configuration, then tell systemd to
restart the MySQL service:

systemctl daemon-reload
systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

With systemd, the override.conf configuration method must be used for certain parameters, rather than
settings in a [mysqld], [mysqld_safe], or [safe_mysqld] group in a MySQL option file:

• For some parameters, override.conf must be used because systemd itself must know their values
and it cannot read MySQL option files to get them.

• Parameters that specify values otherwise settable only using options known to mysqld_safe must be
specified using systemd because there is no corresponding mysqld parameter.

For additional information about using systemd rather than mysqld_safe, see Migrating from
mysqld_safe to systemd.

You can set the following parameters in override.conf:

• To set the number of file descriptors available to the MySQL server, use LimitNOFILE in
override.conf rather than the open_files_limit system variable for mysqld or --open-files-
limit option for mysqld_safe.

• To set the maximum core file size, use LimitCore in override.conf rather than the --core-file-
size option for mysqld_safe.

34

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_open_files_limit
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_open-files-limit
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_open-files-limit
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_core-file-size
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_core-file-size

Configuring Multiple MySQL Instances Using systemd

• To set the scheduling priority for the MySQL server, use Nice in override.conf rather than the --
nice option for mysqld_safe.

Some MySQL parameters are configured using environment variables:

• LD_PRELOAD: Set this variable if the MySQL server should use a specific memory-allocation library.

• NOTIFY_SOCKET: This environment variable specifies the socket that mysqld uses to communicate
notification of startup completion and service status change with systemd. It is set by systemd when
the mysqld service is started. The mysqld service reads the variable setting and writes to the defined
location.

In MySQL 8.0, mysqld uses the Type=notify process startup type. (Type=forking was used in
MySQL 5.7.) With Type=notify, systemd automatically configures a socket file and exports the path to
the NOTIFY_SOCKET environment variable.

• TZ: Set this variable to specify the default time zone for the server.

There are multiple ways to specify environment variable values for use by the MySQL server process
managed by systemd:

• Use Environment lines in the override.conf file. For the syntax, see the example in the preceding
discussion that describes how to use this file.

• Specify the values in the /etc/sysconfig/mysql file (create the file if it does not exist). Assign values
using the following syntax:

LD_PRELOAD=/path/to/malloc/library
TZ=time_zone_setting

After modifying /etc/sysconfig/mysql, restart the server to make the changes effective:

systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

To specify options for mysqld without modifying systemd configuration files directly, set or unset the
MYSQLD_OPTS systemd variable. For example:

systemctl set-environment MYSQLD_OPTS="--general_log=1"
systemctl unset-environment MYSQLD_OPTS

MYSQLD_OPTS can also be set in the /etc/sysconfig/mysql file.

After modifying the systemd environment, restart the server to make the changes effective:

systemctl restart mysqld # RPM platforms
systemctl restart mysql # Debian platforms

For platforms that use systemd, the data directory is initialized if empty at server startup. This might be a
problem if the data directory is a remote mount that has temporarily disappeared: The mount point would
appear to be an empty data directory, which then would be initialized as a new data directory. To suppress
this automatic initialization behavior, specify the following line in the /etc/sysconfig/mysql file (create
the file if it does not exist):

NO_INIT=true

Configuring Multiple MySQL Instances Using systemd

This section describes how to configure systemd for multiple instances of MySQL.

35

https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_nice
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_nice

Configuring Multiple MySQL Instances Using systemd

Note

Because systemd has the capability of managing multiple MySQL instances
on platforms for which systemd support is installed, mysqld_multi and
mysqld_multi.server are unnecessary and are not installed.

To use multiple-instance capability, modify the my.cnf option file to include configuration of key options for
each instance. These file locations are typical:

• /etc/my.cnf or /etc/mysql/my.cnf (RPM platforms)

• /etc/mysql/mysql.conf.d/mysqld.cnf (Debian platforms)

For example, to manage two instances named replica01 and replica02, add something like this to the
option file:

RPM platforms:

[mysqld@replica01]
datadir=/var/lib/mysql-replica01
socket=/var/lib/mysql-replica01/mysql.sock
port=3307
log-error=/var/log/mysqld-replica01.log
[mysqld@replica02]
datadir=/var/lib/mysql-replica02
socket=/var/lib/mysql-replica02/mysql.sock
port=3308
log-error=/var/log/mysqld-replica02.log

Debian platforms:

[mysqld@replica01]
datadir=/var/lib/mysql-replica01
socket=/var/lib/mysql-replica01/mysql.sock
port=3307
log-error=/var/log/mysql/replica01.log
[mysqld@replica02]
datadir=/var/lib/mysql-replica02
socket=/var/lib/mysql-replica02/mysql.sock
port=3308
log-error=/var/log/mysql/replica02.log

The replica names shown here use @ as the delimiter because that is the only delimiter supported by
systemd.

Instances then are managed by normal systemd commands, such as:

systemctl start mysqld@replica01
systemctl start mysqld@replica02

To enable instances to run at boot time, do this:

systemctl enable mysqld@replica01
systemctl enable mysqld@replica02

Use of wildcards is also supported. For example, this command displays the status of all replica instances:

systemctl status 'mysqld@replica*'

For management of multiple MySQL instances on the same machine, systemd automatically uses a
different unit file:

• mysqld@.service rather than mysqld.service (RPM platforms)

36

Migrating from mysqld_safe to systemd

• mysql@.service rather than mysql.service (Debian platforms)

In the unit file, %I and %i reference the parameter passed in after the @ marker and are used to manage
the specific instance. For a command such as this:

systemctl start mysqld@replica01

systemd starts the server using a command such as this:

mysqld --defaults-group-suffix=@%I ...

The result is that the [server], [mysqld], and [mysqld@replica01] option groups are read and
used for that instance of the service.

Note

On Debian platforms, AppArmor prevents the server from reading or writing /
var/lib/mysql-replica*, or anything other than the default locations. To
address this, you must customize or disable the profile in /etc/apparmor.d/
usr.sbin.mysqld.

Note

On Debian platforms, the packaging scripts for MySQL uninstallation cannot
currently handle mysqld@ instances. Before removing or upgrading the package,
you must stop any extra instances manually first.

Migrating from mysqld_safe to systemd

Because mysqld_safe is not installed on platforms that use systemd to manage MySQL, options
previously specified for that program (for example, in an [mysqld_safe] or [safe_mysqld] option
group) must be specified another way:

• Some mysqld_safe options are also understood by mysqld and can be moved from the
[mysqld_safe] or [safe_mysqld] option group to the [mysqld] group. This does not include --
pid-file, --open-files-limit, or --nice. To specify those options, use the override.conf
systemd file, described previously.

Note

On systemd platforms, use of [mysqld_safe] and [safe_mysqld] option
groups is not supported and may lead to unexpected behavior.

• For some mysqld_safe options, there are alternative mysqld procedures. For example, the
mysqld_safe option for enabling syslog logging is --syslog, which is deprecated. To write error log
output to the system log, use the instructions at Error Logging to the System Log.

• mysqld_safe options not understood by mysqld can be specified in override.conf or environment
variables. For example, with mysqld_safe, if the server should use a specific memory allocation library,
this is specified using the --malloc-lib option. For installations that manage the server with systemd,
arrange to set the LD_PRELOAD environment variable instead, as described previously.

37

https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_pid-file
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_pid-file
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_open-files-limit
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_nice
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_syslog
https://dev.mysql.com/doc/refman/8.0/en/error-log-syslog.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_malloc-lib

38

Chapter 3 Installing MySQL on Solaris

Table of Contents
3.1 Installing MySQL on Solaris Using a Solaris PKG .. 40

Note

MySQL 8.0 supports Solaris 11.4 and higher

MySQL on Solaris is available in a number of different formats.

• For information on installing using the native Solaris PKG format, see Section 3.1, “Installing MySQL on
Solaris Using a Solaris PKG”.

• To use a standard tar binary installation, use the notes provided in Chapter 1, Installing MySQL on
Unix/Linux Using Generic Binaries. Check the notes and hints at the end of this section for Solaris
specific notes that you may need before or after installation.

Note

MySQL 5.7 has a dependency on the Oracle Developer Studio Runtime Libraries;
but this does not apply to MySQL 8.0.

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, https://dev.mysql.com/
downloads/mysql/8.0.html.

Additional notes to be aware of when installing and using MySQL on Solaris:

• If you want to use MySQL with the mysql user and group, use the groupadd and useradd commands:

groupadd mysql
useradd -g mysql -s /bin/false mysql

• If you install MySQL using a binary tarball distribution on Solaris, because the Solaris tar cannot handle
long file names, use GNU tar (gtar) to unpack the distribution. If you do not have GNU tar on your
system, install it with the following command:

pkg install archiver/gnu-tar

• You should mount any file systems on which you intend to store InnoDB files with the forcedirectio
option. (By default mounting is done without this option.) Failing to do so causes a significant drop in
performance when using the InnoDB storage engine on this platform.

• If you would like MySQL to start automatically, you can copy support-files/mysql.server to /
etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

• If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this.

• To configure the generation of core files on Solaris you should use the coreadm command. Because of
the security implications of generating a core on a setuid() application, by default, Solaris does not

39

https://dev.mysql.com/downloads/mysql/8.0.html
https://dev.mysql.com/downloads/mysql/8.0.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_back_log

Installing MySQL on Solaris Using a Solaris PKG

support core files on setuid() programs. However, you can modify this behavior using coreadm. If
you enable setuid() core files for the current user, they are generated using mode 600 and are owned
by the superuser.

3.1 Installing MySQL on Solaris Using a Solaris PKG

You can install MySQL on Solaris using a binary package of the native Solaris PKG format instead of the
binary tarball distribution.

Note

MySQL 5.7 has a dependency on the Oracle Developer Studio Runtime Libraries;
but this does not apply to MySQL 8.0.

To use this package, download the corresponding mysql-VERSION-solaris11-PLATFORM.pkg.gz
file, then uncompress it. For example:

$> gunzip mysql-8.0.44-solaris11-x86_64.pkg.gz

To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges to
perform this operation:

$> pkgadd -d mysql-8.0.44-solaris11-x86_64.pkg
The following packages are available:
 1 mysql MySQL Community Server (GPL)
 (i86pc) 8.0.44
Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

The PKG installer installs all of the files and tools needed, and then initializes your database if one does
not exist. To complete the installation, you should set the root password for MySQL as provided in the
instructions at the end of the installation. Alternatively, you can run the mysql_secure_installation
script that comes with the installation.

By default, the PKG package installs MySQL under the root path /opt/mysql. You can change only the
installation root path when using pkgadd, which can be used to install MySQL in a different Solaris zone. If
you need to install in a specific directory, use a binary tar file distribution.

The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable
MySQL to startup and shutdown automatically, you should create a link between this file and the init script
directories. For example, to ensure safe startup and shutdown of MySQL you could use the following
commands to add the right links:

$> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
$> ln /etc/init.d/mysql /etc/rc0.d/K02mysql

To remove MySQL, the installed package name is mysql. You can use this in combination with the pkgrm
command to remove the installation.

To upgrade when using the Solaris package file format, you must remove the existing installation before
installing the updated package. Removal of the package does not delete the existing database information,
only the server, binaries and support files. The typical upgrade sequence is therefore:

$> mysqladmin shutdown
$> pkgrm mysql
$> pkgadd -d mysql-8.0.44-solaris11-x86_64.pkg
$> mysqld_safe &
$> mysql_upgrade # prior to MySQL 8.0.16 only

40

Installing MySQL on Solaris Using a Solaris PKG

You should check the notes in Upgrading MySQL before performing any upgrade.

41

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

42

Chapter 4 Installing MySQL on FreeBSD
This section provides information about installing MySQL on variants of FreeBSD Unix.

You can install MySQL on FreeBSD by using the binary distribution provided by Oracle. For more
information, see Chapter 1, Installing MySQL on Unix/Linux Using Generic Binaries.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client ports
available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you must
install it first before compiling MySQL.

Note

Prerequisite libraries as per ldd mysqld: libthr, libcrypt, libkrb5, libm, librt,
libexecinfo, libunwind, and libssl.

To install using the ports system:

cd /usr/ports/databases/mysql80-server
make
...
cd /usr/ports/databases/mysql80-client
make
...

The standard port installation places the server into /usr/local/libexec/mysqld, with the startup
script for the MySQL server placed in /usr/local/etc/rc.d/mysql-server.

Some additional notes on the BSD implementation:

• To remove MySQL after installation using the ports system:

cd /usr/ports/databases/mysql80-server
make deinstall
...
cd /usr/ports/databases/mysql80-client
make deinstall
...

• If you get problems with the current date in MySQL, setting the TZ variable should help. See
Environment Variables.

43

http://www.freebsd.org/
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html

44

Chapter 5 Initializing the Data Directory
After MySQL is installed, the data directory must be initialized, including the tables in the mysql system
schema:

• For some MySQL installation methods, data directory initialization is automatic, as described in
Postinstallation Setup and Testing.

• For other installation methods, you must initialize the data directory manually. These include installation
from generic binary and source distributions on Unix and Unix-like systems, and installation from a ZIP
Archive package on Windows.

This section describes how to initialize the data directory manually for MySQL installation methods for
which data directory initialization is not automatic. For some suggested commands that enable testing
whether the server is accessible and working properly, see Testing the Server.

Note

In MySQL 8.0, the default authentication plugin has changed from
mysql_native_password to caching_sha2_password, and the
'root'@'localhost' administrative account uses caching_sha2_password
by default. If you prefer that the root account use the previous default
authentication plugin (mysql_native_password), see caching_sha2_password
and the root Administrative Account.

The mysql_native_password plugin is deprecated as of MySQL 8.0.34,
disabled by default as of MySQL 8.4.0, and removed as of MySQL 9.0.0.

• Data Directory Initialization Overview

• Data Directory Initialization Procedure

• Server Actions During Data Directory Initialization

• Post-Initialization root Password Assignment

Data Directory Initialization Overview
In the examples shown here, the server is intended to run under the user ID of the mysql login account.
Either create the account if it does not exist (see Create a mysql User and Group), or substitute the name
of a different existing login account that you plan to use for running the server.

1. Change location to the top-level directory of your MySQL installation, which is typically /usr/local/
mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

Within this directory you can find several files and subdirectories, including the bin subdirectory that
contains the server, as well as client and utility programs.

2. The secure_file_priv system variable limits import and export operations to a specific directory.
Create a directory whose location can be specified as the value of that variable:

mkdir mysql-files

Grant directory user and group ownership to the mysql user and mysql group, and set the directory
permissions appropriately:

45

https://dev.mysql.com/doc/refman/8.0/en/postinstallation.html
https://dev.mysql.com/doc/refman/8.0/en/testing-server.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-root-account
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-root-account
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv

Data Directory Initialization Procedure

chown mysql:mysql mysql-files
chmod 750 mysql-files

3. Use the server to initialize the data directory, including the mysql schema containing the initial MySQL
grant tables that determine how users are permitted to connect to the server. For example:

bin/mysqld --initialize --user=mysql

For important information about the command, especially regarding command options you might use,
see Data Directory Initialization Procedure. For details about how the server performs initialization, see
Server Actions During Data Directory Initialization.

Typically, data directory initialization need be done only after you first install MySQL. (For upgrades to
an existing installation, perform the upgrade procedure instead; see Upgrading MySQL.) However, the
command that initializes the data directory does not overwrite any existing mysql schema tables, so it
is safe to run in any circumstances.

4. If you want to deploy the server with automatic support for secure connections, use the
mysql_ssl_rsa_setup utility to create default SSL and RSA files:

bin/mysql_ssl_rsa_setup

For more information, see mysql_ssl_rsa_setup — Create SSL/RSA Files.

Note

The mysql_ssl_rsa_setup utility is deprecated as of MySQL 8.0.34.

5. In the absence of any option files, the server starts with its default settings. (See Server Configuration
Defaults.) To explicitly specify options that the MySQL server should use at startup, put them in an
option file such as /etc/my.cnf or /etc/mysql/my.cnf. (See Using Option Files.) For example,
you can use an option file to set the secure_file_priv system variable.

6. To arrange for MySQL to start without manual intervention at system boot time, see Starting and
Stopping MySQL Automatically.

7. Data directory initialization creates time zone tables in the mysql schema but does not populate them.
To do so, use the instructions in MySQL Server Time Zone Support.

Data Directory Initialization Procedure

Change location to the top-level directory of your MySQL installation, which is typically /usr/local/
mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

To initialize the data directory, invoke mysqld with the --initialize or --initialize-insecure
option, depending on whether you want the server to generate a random initial password for the
'root'@'localhost' account, or to create that account with no password:

• Use --initialize for “secure by default” installation (that is, including generation of a random initial
root password). In this case, the password is marked as expired and you must choose a new one.

• With --initialize-insecure, no root password is generated. This is insecure; it is assumed
that you intend to assign a password to the account in a timely fashion before putting the server into
production use.

46

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/automatic-start.html
https://dev.mysql.com/doc/refman/8.0/en/automatic-start.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure

Data Directory Initialization Procedure

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

Note

The server writes any messages (including any initial password) to its standard
error output. This may be redirected to the error log, so look there if you do not see
the messages on your screen. For information about the error log, including where it
is located, see The Error Log.

On Windows, use the --console option to direct messages to the console.

On Unix and Unix-like systems, it is important for the database directories and files to be owned by the
mysql login account so that the server has read and write access to them when you run it later. To ensure
this, start mysqld from the system root account and include the --user option as shown here:

bin/mysqld --initialize --user=mysql
bin/mysqld --initialize-insecure --user=mysql

Alternatively, execute mysqld while logged in as mysql, in which case you can omit the --user option
from the command.

On Windows, use one of these commands:

bin\mysqld --initialize --console
bin\mysqld --initialize-insecure --console

Note

Data directory initialization might fail if required system libraries are missing. For
example, you might see an error like this:

bin/mysqld: error while loading shared libraries:
libnuma.so.1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your system's
package manager. Then retry the data directory initialization command.

It might be necessary to specify other options such as --basedir or --datadir if mysqld cannot
identify the correct locations for the installation directory or data directory. For example (enter the
command on a single line):

bin/mysqld --initialize --user=mysql
 --basedir=/opt/mysql/mysql
 --datadir=/opt/mysql/mysql/data

Alternatively, put the relevant option settings in an option file and pass the name of that file to mysqld. For
Unix and Unix-like systems, suppose that the option file name is /opt/mysql/mysql/etc/my.cnf. Put
these lines in the file:

[mysqld]
basedir=/opt/mysql/mysql
datadir=/opt/mysql/mysql/data

Then invoke mysqld as follows (enter the command on a single line, with the --defaults-file option
first):

bin/mysqld --defaults-file=/opt/mysql/mysql/etc/my.cnf

47

https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file

Server Actions During Data Directory Initialization

 --initialize --user=mysql

On Windows, suppose that C:\my.ini contains these lines:

[mysqld]
basedir=C:\\Program Files\\MySQL\\MySQL Server 8.0
datadir=D:\\MySQLdata

Then invoke mysqld as follows (again, you should enter the command on a single line, with the --
defaults-file option first):

bin\mysqld --defaults-file=C:\my.ini
 --initialize --console

Important

When initializing the data directory, you should not specify any options other than
those used for setting directory locations such as --basedir or --datadir, and
the --user option if needed. Options to be employed by the MySQL server during
normal use can be set when restarting it following initialization. See the description
of the --initialize option for further information.

Server Actions During Data Directory Initialization
Note

The data directory initialization sequence performed by the server does not
substitute for the actions performed by mysql_secure_installation and
mysql_ssl_rsa_setup. See mysql_secure_installation — Improve MySQL
Installation Security, and mysql_ssl_rsa_setup — Create SSL/RSA Files.

When invoked with the --initialize or --initialize-insecure option, mysqld performs the
following actions during the data directory initialization sequence:

1. The server checks for the existence of the data directory as follows:

• If no data directory exists, the server creates it.

• If the data directory exists but is not empty (that is, it contains files or subdirectories), the server exits
after producing an error message:

[ERROR] --initialize specified but the data directory exists. Aborting.

In this case, remove or rename the data directory and try again.

An existing data directory is permitted to be nonempty if every entry has a name that begins with a
period (.).

2. Within the data directory, the server creates the mysql system schema and its tables, including the
data dictionary tables, grant tables, time zone tables, and server-side help tables. See The mysql
System Schema.

3. The server initializes the system tablespace and related data structures needed to manage InnoDB
tables.

Note

After mysqld sets up the InnoDB system tablespace, certain changes
to tablespace characteristics require setting up a whole new instance.

48

https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_instance

Post-Initialization root Password Assignment

Qualifying changes include the file name of the first file in the system
tablespace and the number of undo logs. If you do not want to use the default
values, make sure that the settings for the innodb_data_file_path and
innodb_log_file_size configuration parameters are in place in the
MySQL configuration file before running mysqld. Also make sure to specify
as necessary other parameters that affect the creation and location of InnoDB
files, such as innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the --defaults-
extra-file option when you run mysqld.

4. The server creates a 'root'@'localhost' superuser account and other reserved accounts
(see Reserved Accounts). Some reserved accounts are locked and cannot be used by clients, but
'root'@'localhost' is intended for administrative use and you should assign it a password.

Server actions with respect to a password for the 'root'@'localhost' account depend on how you
invoke it:

• With --initialize but not --initialize-insecure, the server generates a random password,
marks it as expired, and writes a message displaying the password:

[Warning] A temporary password is generated for root@localhost:
iTag*AfrH5ej

• With --initialize-insecure, (either with or without --initialize because --initialize-
insecure implies --initialize), the server does not generate a password or mark it expired,
and writes a warning message:

[Warning] root@localhost is created with an empty password ! Please
consider switching off the --initialize-insecure option.

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

5. The server populates the server-side help tables used for the HELP statement (see HELP Statement).
The server does not populate the time zone tables. To do so manually, see MySQL Server Time Zone
Support.

6. If the init_file system variable was given to name a file of SQL statements, the server executes the
statements in the file. This option enables you to perform custom bootstrapping sequences.

When the server operates in bootstrap mode, some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such as
CREATE USER or GRANT), replication, and global transaction identifiers.

7. The server exits.

Post-Initialization root Password Assignment

After you initialize the data directory by starting the server with --initialize or --initialize-
insecure, start the server normally (that is, without either of those options) and assign the
'root'@'localhost' account a new password:

1. Start the server. For instructions, see Starting the Server.

2. Connect to the server:

49

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_configuration_file
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_data_home_dir
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_log_group_home_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/reserved-accounts.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/starting-server.html

Post-Initialization root Password Assignment

• If you used --initialize but not --initialize-insecure to initialize the data directory,
connect to the server as root:

mysql -u root -p

Then, at the password prompt, enter the random password that the server generated during the
initialization sequence:

Enter password: (enter the random root password here)

Look in the server error log if you do not know this password.

• If you used --initialize-insecure to initialize the data directory, connect to the server as root
without a password:

mysql -u root --skip-password

3. After connecting, use an ALTER USER statement to assign a new root password:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

See also Securing the Initial MySQL Account.

Note

Attempts to connect to the host 127.0.0.1 normally resolve to the localhost
account. However, this fails if the server is run with skip_name_resolve
enabled. If you plan to do that, make sure that an account exists that can
accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

It is possible to put those statements in a file to be executed using the init_file
system variable, as discussed in Server Actions During Data Directory Initialization.

50

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/default-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file

	MySQL and Linux/Unix
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Installing MySQL on Unix/Linux Using Generic Binaries
	Chapter 2 Installing MySQL on Linux
	2.1 Installing MySQL on Linux Using the MySQL Yum Repository
	2.2 Installing MySQL on Linux Using the MySQL APT Repository
	2.3 Installing MySQL on Linux Using the MySQL SLES Repository
	2.4 Installing MySQL on Linux Using RPM Packages from Oracle
	2.5 Installing MySQL on Linux Using Debian Packages from Oracle
	2.6 Deploying MySQL on Linux with Docker Containers
	2.6.1 Basic Steps for MySQL Server Deployment with Docker
	2.6.2 More Topics on Deploying MySQL Server with Docker
	2.6.3 Deploying MySQL on Windows and Other Non-Linux Platforms with Docker

	2.7 Installing MySQL on Linux from the Native Software Repositories
	2.8 Installing MySQL on Linux with Juju
	2.9 Managing MySQL Server with systemd

	Chapter 3 Installing MySQL on Solaris
	3.1 Installing MySQL on Solaris Using a Solaris PKG

	Chapter 4 Installing MySQL on FreeBSD
	Chapter 5 Initializing the Data Directory

