That means each number is represented as 1.xxx xxx xxx xxx xxx xxx xxx xx times some power of 2, where each x is a binary digit, either 0 or 1. (eitherWith the exception of extremely small denormalized numbers less than \$2^{-126}\$ - they start with 0 or. instead of 1., but I'll ignore them for what follows)
So in the range from in the range from 2^i and 2^(i+1)\$2^i\$ and \$2^{(i+1)}\$, you can represent any number to within an accuracy of ±2^(i - 24)\$\pm 2^{(i - 24)}\$
In this range: You get accuracy within:
-----------------------------------------------
0.25 - 0.5 0.25 - 0.5 2^-26 = 1.49011611938477E490 116 119 384 77 E-08
0.5 - 1 0.5 - 1 2^-25 = 2.98023223876953E980 232 238 769 53 E-08
1 - 2 1 - 2 2^-24 = 5.96046447753906E960 464 477 539 06 E-08
2 - 4 2 - 4 2^-23 = 1.19209289550781E192 092 895 507 81 E-07
4 - 8 4 - 8 2^-22 = 2.38418579101562E384 185 791 015 62 E-07
8 - 16 8 - 16 2^-21 = 4.76837158203125E768 371 582 031 25 E-07
16 - 32 16 - 32 2^-20 = 9.5367431640625E536 743 164 062 5 E-07
32 - 64 32 - 64 2^-19 = 1.9073486328125E907 348 632 812 5 E-06
64 - 128 64 - 128 2^-18 = 0.000003814697265625000 003 814 697 265 625
128 - 256 128 - 256 2^-17 = 0.00000762939453125000 007 629 394 531 25
256 - 512 256 - 512 2^-16 = 0.0000152587890625000 015 258 789 062 5
512 - 1024 512 - 1 024 2^-15 = 0.000030517578125000 030 517 578 125
1024 - 2048 1 024 - 2 048 2^-14 = 0.00006103515625000 061 035 156 25
2048 - 4096 2 048 - 4 096 2^-13 = 0.0001220703125000 122 070 312 5
4096 - 8192 4 096 - 8 192 2^-12 = 0.000244140625000 244 140 625
8192 - 16384 8 192 - 16 384 2^-11 = 0.00048828125000 488 281 25
16384 - 32768 16 384 - 32 768 2^-10 = 0.0009765625000 976 562 5
32768 - 65536 32 768 - 65 536 2^-9 = 0.001953125001 953 125
65536 - 131072 65 536 - 131 072 2^-8 = 0.00390625003 906 25
131072 - 262144 131 072 - 262 144 2^-7 = 0.0078125007 812 5
262144 - 524288 262 144 - 524 288 2^-6 = 0.015625015 625
524288 524 288 - 1048576 1 048 576 2^-5 = 0.03125031 25
1048576 1 048 576 - 2097152 2 097 152 2^-4 = 0.0625062 5
2097152 2 097 152 - 4194304 4 194 304 2^-3 = 0.125
4194304 4 194 304 - 8388608 8 388 608 2^-2 = 0.25
8388608 8 388 608 - 1677721616 777 216 2^-1 = 0.5
1677721616 777 216 - 3355443233 554 432 2^0 = 1
So if your units are metres, you'll lose millimetre precision around in the 1648416 484 -32768 32 768 band (about 16-33 km from the origin).
If we use centimetres as our unit, we lose millimetre precision at the 10485761 048 576-20971522 097 152 band (10-21 km from the origin)
If we use hectametres as our unit, we lose millimetre precision at the 128-256 band (13-26 km from the origin)
... soso changing the unit over four orders of magnitude still ends up with a loss of millimetre precision somewhere in the range of tens of kilometers. All we're shifting is where exactly in that band it hits (due to the mismatch between base-10 and base-2 numbering) not drastically extending our playable area.
If you know the level of accuracy you need (say, a span of 0.01 units maps to about 1 px at your typical viewing/interaction distance, and any smaller offset is invisible), you can use the table above to find where you lose that accuracy, and step back a few orders of magnitude for safety in case of lossy operations.