Reading your question I think that you want
$$\alpha_t = 1 \implies \alpha_{t+1} + \alpha_{t+2} = 2 \vee \alpha_{t-1} + \alpha_{t+1} = 2 \vee \alpha_{t-2} + \alpha_{t-1} = 2$$
not
$$\alpha_t = 1 \implies \alpha_t + \alpha_{t+1} + \alpha_{t + 2} = 3, ~ \forall t\in [0, n-2]$$
or, equivalently,
$$\alpha_t = 1 \implies \alpha_{t+1} + \alpha_{t + 2} = 2, ~ \forall t\in [0, n-2]$$
In this case, the answer should be
$$ \alpha_t \implies \alpha_{t+1} \wedge \alpha_{t + 2}, ~ \forall t\in [0, n-2]$$
$$ \neg\alpha_t \vee (\alpha_{t+1} \wedge \alpha_{t + 2}), ~ \forall t\in [0, n-2]$$
$$ (\neg\alpha_t \vee \alpha_{t+1}) \wedge (\neg\alpha_t \vee \alpha_{t + 2}), ~ \forall t\in [0, n-2]$$
rewriting this sentence in binary variables, the constraints are
$$
\begin{align}
(1-\alpha_t) + \alpha_{t+1} \geq 1, ~ \forall t\in [0, n-2]\\
(1-\alpha_t) + \alpha_{t+2} \geq 1, ~ \forall t\in [0, n-2]
\end{align}
$$
Another case
OK, consider this logical sentence
$$\alpha_t \implies (\alpha_{t+1} \wedge \alpha_{t+2}) \vee (\alpha_{t-1} \wedge \alpha_{t+1}) \vee (\alpha_{t-2} \wedge \alpha_{t-1})$$
$$\neg\alpha_t \vee (\alpha_{t+1} \wedge \alpha_{t+2}) \vee (\alpha_{t-1} \wedge \alpha_{t+1}) \vee (\alpha_{t-2} \wedge \alpha_{t-1})$$
After some operations ...
$$(\neg\alpha_t \vee \alpha_{t-2} \vee \alpha_{t+1}) \wedge (\neg\alpha_t \vee \alpha_{t-1} \vee \alpha_{t+1}) \wedge (\neg\alpha_t \vee \alpha_{t-1} \vee \alpha_{t+2})$$
the constraints for $t\in [2, n-2]$ are
$$
\begin{align}
(1-\alpha_t) + \alpha_{t-2} + \alpha_{t+1} \geq 1 \\
(1-\alpha_t) + \alpha_{t-1} + \alpha_{t+1} \geq 1 \\
(1-\alpha_t) + \alpha_{t-1} + \alpha_{t+2} \geq 1
\end{align}
$$
You need to fix the cases $t=0, t=1, t=n-1, t=n$ using the same idea. For $t\in\{0,n\}$ you can use the first set of equations presented in this text.
$$
\begin{align}
(1-\alpha_0) + \alpha_{1} \geq 1 \\
(1-\alpha_0) + \alpha_{2} \geq 1 \\
(1-\alpha_n) + \alpha_{n-1} \geq 1 \\
(1-\alpha_n) + \alpha_{n-2} \geq 1
\end{align}
$$
For $t\in\{1,n-1\}$
$$\alpha_1 \implies (\alpha_{2} \wedge \alpha_{3}) \vee (\alpha_{0} \wedge \alpha_{2})$$
$$\neg\alpha_1 \vee (\alpha_{2} \wedge \alpha_{3}) \vee (\alpha_{0} \wedge \alpha_{2}) $$
$$(\neg\alpha_1 \vee \alpha_{0} \vee \alpha_{3}) \wedge (\neg\alpha_{1} \wedge \alpha_{2}) $$
and
$$\alpha_{n-1} \implies (\alpha_{n-2} \wedge \alpha_{n-3}) \vee (\alpha_{n} \wedge \alpha_{n-2})$$
$$\neg\alpha_{n-1} \vee (\alpha_{n-2} \wedge \alpha_{n-3}) \vee (\alpha_{n} \wedge \alpha_{n-2}) $$
$$(\neg\alpha_{n-1} \vee \alpha_{n} \vee \alpha_{n-3}) \wedge (\neg\alpha_{n-1} \wedge \alpha_{n-2}) $$
resulting in these constraints
$$
\begin{align}
(1-\alpha_1) + \alpha_{0} + \alpha_{3}\geq 1 \\
(1-\alpha_1) + \alpha_{2} \geq 1 \\
(1-\alpha_{n-1}) + \alpha_{n} +\alpha_{n-3} \geq 1 \\
(1-\alpha_{n-1}) + \alpha_{n-2} \geq 1
\end{align}
$$
finally
$$
\left\{\begin{align}
& (1-\alpha_0) + \alpha_{1} \geq 1 & \\
& (1-\alpha_0) + \alpha_{2} \geq 1 & \\
& (1-\alpha_1) + \alpha_{0} + \alpha_{3}\geq 1 & \\
& (1-\alpha_1) + \alpha_{2} \geq 1 & \\
& (1-\alpha_t) + \alpha_{t-2} + \alpha_{t+1} \geq 1, & \forall t\in [2,n-2] \\
& (1-\alpha_t) + \alpha_{t-1} + \alpha_{t+1} \geq 1, & \forall t\in [2,n-2] \\
& (1-\alpha_t) + \alpha_{t-1} + \alpha_{t+2} \geq 1, & \forall t\in [2,n-2] \\
& (1-\alpha_{n-1}) + \alpha_{n} +\alpha_{n-3} \geq 1 & \\
& (1-\alpha_{n-1}) + \alpha_{n-2} \geq 1 & \\
& (1-\alpha_n) + \alpha_{n-1} \geq 1 & \\
& (1-\alpha_n) + \alpha_{n-2} \geq 1 &
\end{align}\right.
$$
These constraints cover all cases correctly. There is no counterexample.