%matplotlib inline import sys import time import numpy as np from matplotlib import pyplot as plt try: import seaborn except ImportError: pass from IPython import parallel def price_options(S=100.0, K=100.0, sigma=0.25, r=0.05, days=260, paths=10000): """ Price European and Asian options using a Monte Carlo method. Parameters ---------- S : float The initial price of the stock. K : float The strike price of the option. sigma : float The volatility of the stock. r : float The risk free interest rate. days : int The number of days until the option expires. paths : int The number of Monte Carlo paths used to price the option. Returns ------- A tuple of (E. call, E. put, A. call, A. put) option prices. """ import numpy as np from math import exp,sqrt h = 1.0/days const1 = exp((r-0.5*sigma**2)*h) const2 = sigma*sqrt(h) stock_price = S*np.ones(paths, dtype='float64') stock_price_sum = np.zeros(paths, dtype='float64') for j in range(days): growth_factor = const1*np.exp(const2*np.random.standard_normal(paths)) stock_price = stock_price*growth_factor stock_price_sum = stock_price_sum + stock_price stock_price_avg = stock_price_sum/days zeros = np.zeros(paths, dtype='float64') r_factor = exp(-r*h*days) euro_put = r_factor*np.mean(np.maximum(zeros, K-stock_price)) asian_put = r_factor*np.mean(np.maximum(zeros, K-stock_price_avg)) euro_call = r_factor*np.mean(np.maximum(zeros, stock_price-K)) asian_call = r_factor*np.mean(np.maximum(zeros, stock_price_avg-K)) return (euro_call, euro_put, asian_call, asian_put) price = 100.0 # Initial price rate = 0.05 # Interest rate days = 260 # Days to expiration paths = 10000 # Number of MC paths n_strikes = 6 # Number of strike values min_strike = 90.0 # Min strike price max_strike = 110.0 # Max strike price n_sigmas = 5 # Number of volatility values min_sigma = 0.1 # Min volatility max_sigma = 0.4 # Max volatility strike_vals = np.linspace(min_strike, max_strike, n_strikes) sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas) rc = parallel.Client() view = rc.load_balanced_view() print "Strike prices: ", strike_vals print "Volatilities: ", sigma_vals t1 = time.time() async_results = [] for strike in strike_vals: for sigma in sigma_vals: ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths) async_results.append(ar) print "Submitted tasks: ", len(async_results) rc.wait(async_results) t2 = time.time() t = t2-t1 print "Parallel calculation completed, time = %s s" % t results = [ar.get() for ar in async_results] prices = np.empty(n_strikes*n_sigmas, dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)] ) for i, price in enumerate(results): prices[i] = tuple(price) prices.shape = (n_strikes, n_sigmas) plt.figure() plt.contourf(sigma_vals, strike_vals, prices['ecall']) plt.axis('tight') plt.colorbar() plt.title('European Call') plt.xlabel("Volatility") plt.ylabel("Strike Price") plt.figure() plt.contourf(sigma_vals, strike_vals, prices['acall']) plt.axis('tight') plt.colorbar() plt.title("Asian Call") plt.xlabel("Volatility") plt.ylabel("Strike Price") plt.figure() plt.contourf(sigma_vals, strike_vals, prices['eput']) plt.axis('tight') plt.colorbar() plt.title("European Put") plt.xlabel("Volatility") plt.ylabel("Strike Price") plt.figure() plt.contourf(sigma_vals, strike_vals, prices['aput']) plt.axis('tight') plt.colorbar() plt.title("Asian Put") plt.xlabel("Volatility") plt.ylabel("Strike Price")