sqldf for pandas
Project description
pandasql allows you to query pandas DataFrames using SQL syntax. It works similarly to sqldf in R. pandasql seeks to provide a more familiar way of manipulating and cleaning data for people new to Python or pandas.
Installation
$ pip install -U pandasql
Basics
The main function used in pandasql is sqldf. sqldf accepts 2 parametrs - a sql query string - an set of session/environment variables (locals() or globals())
Specifying locals() or globals() can get tedious. You can defined a short helper function to fix this.
from pandasql import sqldf pysqldf = lambda q: sqldf(q, globals())
Querying
pandasql uses SQLite syntax. Any pandas dataframes will be automatically detected by pandasql. You can query them as you would any regular SQL table.
$ python
>>> from pandasql import sqldf, load_meat, load_births
>>> pysqldf = lambda q: sqldf(q, globals())
>>> meat = load_meat()
>>> births = load_births()
>>> print pysqldf("SELECT * FROM meat LIMIT 10;").head()
date beef veal pork lamb_and_mutton broilers other_chicken turkey
0 1944-01-01 00:00:00 751 85 1280 89 None None None
1 1944-02-01 00:00:00 713 77 1169 72 None None None
2 1944-03-01 00:00:00 741 90 1128 75 None None None
3 1944-04-01 00:00:00 650 89 978 66 None None None
4 1944-05-01 00:00:00 681 106 1029 78 None None None
joins and aggregations are also supported
>>> q = """SELECT
m.date, m.beef, b.births
FROM
meats m
INNER JOIN
births b
ON m.date = b.date;"""
>>> joined = pyqldf(q)
>>> print joined.head()
date beef births
403 2012-07-01 00:00:00 2200.8 368450
404 2012-08-01 00:00:00 2367.5 359554
405 2012-09-01 00:00:00 2016.0 361922
406 2012-10-01 00:00:00 2343.7 347625
407 2012-11-01 00:00:00 2206.6 320195
>>> q = "select
strftime('%Y', date) as year
, SUM(beef) as beef_total
FROM
meat
GROUP BY
year;"
>>> print pysqldf(q).head()
year beef_total
0 1944 8801
1 1945 9936
2 1946 9010
3 1947 10096
4 1948 8766
More information and code samples available in the examples folder or on our blog.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pandasql-0.7.3.tar.gz.
File metadata
- Download URL: pandasql-0.7.3.tar.gz
- Upload date:
- Size: 26.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
1eb248869086435a7d85281ebd9fe525d69d9d954a0dceb854f71a8d0fd8de69
|
|
| MD5 |
6bfca10a075d587d0da0c3ada496d613
|
|
| BLAKE2b-256 |
6bc4ee4096ffa2eeeca0c749b26f0371bd26aa5c8b611c43de99a4f86d3de0a7
|
File details
Details for the file pandasql-0.7.3-py2.7.egg.
File metadata
- Download URL: pandasql-0.7.3-py2.7.egg
- Upload date:
- Size: 36.3 kB
- Tags: Egg
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
75f08c5cdfd19f61ceed8c38a6ac138c353776ad3be8e015edcee977c2299aad
|
|
| MD5 |
1a87b7250e14c52153be1f5d4464ca8f
|
|
| BLAKE2b-256 |
c0101b2b422d6b3fc34a6b06bfcc41b954f7a71005d1318ed59e123d5ae70d5a
|