Menu

[r431]: / trunk / experiments / lambda.f90  Maximize  Restore  History

Download this file

279 lines (210 with data), 7.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
! lambda.f90
!
! Experiment with lambda expressions (that is, anonymous functions) in
! Fortran
!
! TODO: finalisers
!
! Hm, I do not quite like the treatment of "expr" in correct_pointer:
! "Check the routine correct_pointer! There is something fishy as the
! pointer to the original expression is lost and possibly at the
! wrong moment if there is more than one free variable."
!
module lambda_expressions
implicit none
private
type lambda_integer
integer :: operation
integer :: value
type(lambda_integer), pointer :: first => null()
type(lambda_integer), pointer :: second => null()
end type lambda_integer
type lambda_integer_pointer
type(lambda_integer), pointer :: arg => null()
end type lambda_integer_pointer
type lambda_expression
type(lambda_integer_pointer) :: arg(4)
type(lambda_integer) :: operand(4)
type(lambda_integer), pointer :: expr
contains
procedure :: set => set_expression
procedure :: eval => eval_expression
end type lambda_expression
interface assignment(=)
module procedure integer_set_value
end interface
interface operator(+)
module procedure integer_add
module procedure integer_add_v
module procedure integer_add_vv
end interface
interface operator(*)
module procedure integer_multiply
module procedure integer_multiply_v
module procedure integer_multiply_vv
end interface
interface operator(**)
module procedure integer_exponentiate_v
end interface
public lambda_integer, lambda_expression, assignment(=), operator(+), &
operator(*), operator(**)
contains
subroutine integer_set_value( x, value )
type(lambda_integer), intent(out) :: x
integer, intent(in) :: value
x%operation = 0
x%value = value
x%first => null()
x%second => null()
end subroutine integer_set_value
function integer_add( x, y ) result(add)
type(lambda_integer), intent(in), target :: x
type(lambda_integer), intent(in), target :: y
type(lambda_integer), pointer :: add
allocate( add )
add%operation = 1
add%first => x
add%second => y
end function integer_add
function integer_add_v( x, y ) result(add)
type(lambda_integer), intent(in), target :: x
integer, intent(in) :: y
type(lambda_integer), pointer :: add
type(lambda_integer), pointer :: yy
allocate( yy )
yy = y
allocate( add )
add%operation = 1
add%first => x
add%second => yy
end function integer_add_v
function integer_add_vv( x, y ) result(add)
integer, intent(in) :: x
type(lambda_integer), intent(in), target :: y
type(lambda_integer), pointer :: add
type(lambda_integer), pointer :: xx
allocate( xx )
xx = x
allocate( add )
add%operation = 1
add%first => xx
add%second => y
end function integer_add_vv
function integer_multiply( x, y ) result(multiply)
type(lambda_integer), intent(in), target :: x
type(lambda_integer), intent(in), target :: y
type(lambda_integer), pointer :: multiply
allocate( multiply )
multiply%operation = 2
multiply%first => x
multiply%second => y
end function integer_multiply
function integer_multiply_v( x, y ) result(multiply)
type(lambda_integer), intent(in), target :: x
integer, intent(in) :: y
type(lambda_integer), pointer :: multiply
type(lambda_integer), pointer :: yy
allocate( yy )
yy = y
allocate( multiply )
multiply%operation = 2
multiply%first => x
multiply%second => yy
end function integer_multiply_v
function integer_multiply_vv( x, y ) result(multiply)
integer, intent(in) :: x
type(lambda_integer), intent(in), target :: y
type(lambda_integer), pointer :: multiply
type(lambda_integer), pointer :: xx
allocate( xx )
xx = x
allocate( multiply )
multiply%operation = 2
multiply%first => xx
multiply%second => y
end function integer_multiply_vv
function integer_exponentiate_v( x, y ) result(exponentiate)
type(lambda_integer), intent(in), target :: x
integer, intent(in) :: y
type(lambda_integer), pointer :: exponentiate
type(lambda_integer), pointer :: yy
allocate( yy )
yy = y
allocate( exponentiate )
exponentiate%operation = 3
exponentiate%first => x
exponentiate%second => yy
end function integer_exponentiate_v
recursive subroutine integer_eval( x )
type(lambda_integer) :: x
if ( associated( x%first ) ) call integer_eval( x%first )
if ( associated( x%second ) ) call integer_eval( x%second )
select case( x%operation )
case ( 0 )
! Nothing to be done
case ( 1 )
x%value = x%first%value + x%second%value
case ( 2 )
x%value = x%first%value * x%second%value
case ( 3 )
x%value = x%first%value ** x%second%value
case default
! Nothing to be done
end select
end subroutine integer_eval
subroutine set_expression( lambda, x, expr )
class(lambda_expression) :: lambda
type(lambda_integer), target :: x
type(lambda_integer), pointer :: expr
type(lambda_integer_pointer), dimension(size(lambda%operand)) :: arg
arg(1)%arg => x
arg(2)%arg => null()
arg(3)%arg => null()
arg(4)%arg => null()
!
! Correct the pointers to arguments
!
call correct_pointer( arg, lambda%operand, expr )
allocate( lambda%expr, source=expr )
end subroutine set_expression
recursive subroutine correct_pointer( arg, operand, expr )
type(lambda_integer_pointer), dimension(:) :: arg
type(lambda_integer), dimension(:), target :: operand
type(lambda_integer), pointer :: expr
integer :: ierr
integer :: i
!
! This is fishy!
!
do i = 1,size(arg)
if ( associated(arg(i)%arg, expr ) ) then
expr => operand(i)
if ( associated(expr%first) ) then
call correct_pointer( arg, operand, expr%first )
endif
if ( associated(expr%second) ) then
call correct_pointer( arg, operand, expr%second )
endif
endif
enddo
end subroutine correct_pointer
integer function eval_expression( lambda, x )
class(lambda_expression) :: lambda
integer :: x
lambda%operand(1)%value = x
call integer_eval( lambda%expr )
eval_expression = lambda%expr%value
end function eval_expression
end module lambda_expressions
program test_lambda
use lambda_expressions
type(lambda_integer) :: x
type(lambda_expression) :: lambda1, lambda2, lambda3
integer :: v
call lambda1%set( x, x+2 )
call lambda2%set( x, x*2 )
call lambda3%set( x, x*2+x )
do v = 1,10
write(*,*) v, lambda1%eval(v), lambda2%eval(v), lambda3%eval(v)
enddo
end program