There are two issues at hand here. First, for a function to be turned into a method it must be stored on the class, not the instance. A demonstration:
class Foo(object):
def a(*args):
print 'a', args
def b(*args):
print 'b', args
Foo.b = b
x = Foo()
def c(*args):
print 'c', args
x.c = c
So a is a function defined in the class definition, b is a function assigned to the class afterwards, and c is a function assigned to the instance. Take a look at what happens when we call them:
>>> x.a('a will have "self"')
a (<__main__.Foo object at 0x100425ed0>, 'a will have "self"')
>>> x.b('as will b')
b (<__main__.Foo object at 0x100425ed0>, 'as will b')
>>> x.c('c will only recieve this string')
c ('c will only recieve this string',)
As you can see there is little difference between a function defined along with the class, and one assigned to it later. I believe there is actually no difference as long as there is no metaclass involved, but that is for another time.
The second problem comes from how a function is actually turned into a method in the first place; the function type implements the descriptor protocol. (See the docs for details.) In a nutshell, the function type has a special __get__ method which is called when you perform an attribute lookup on the class itself. Instead of you getting the function object, the __get__ method of that function object is called, and that returns a bound method object (which is what supplies the self argument).
Why is this a problem? Because the functools.partial object is not a descriptor!
>>> import functools
>>> def f(*args):
... print 'f', args
...
>>> g = functools.partial(f, 1, 2, 3)
>>> g
<functools.partial object at 0x10042f2b8>
>>> g.__get__
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'functools.partial' object has no attribute '__get__'
There are a number of options you have at this point. You can explicitly supply the self argument to the partial:
import functools
class Foo(object):
def __init__(self):
def f(self, a, b):
print a + b
self.g = functools.partial(f, self, 1)
x = Foo()
x.g(2)
...or you would imbed the self and value of a in a closure:
class Foo(object):
def __init__(self):
a = 1
def f(b):
print a + b
self.g = f
x = Foo()
x.g(2)
These solutions are of course assuming that there is an as yet unspecified reason for assigning a method to the class in the constructor like this, as you can very easily just define a method directly on the class to do what you are doing here.
Edit: Here is an idea for a solution assuming the functions may be created for the class, instead of the instance:
class Foo(object):
pass
def make_binding(name):
def f(self, *args):
print 'Do %s with %s given %r.' % (name, self, args)
return f
for name in 'foo', 'bar', 'baz':
setattr(Foo, name, make_binding(name))
f = Foo()
f.foo(1, 2, 3)
f.bar('some input')
f.baz()
Gives you:
Do foo with <__main__.Foo object at 0x10053e3d0> given (1, 2, 3).
Do bar with <__main__.Foo object at 0x10053e3d0> given ('some input',).
Do baz with <__main__.Foo object at 0x10053e3d0> given ().