Random sampling in numpy | randint() function
The numpy.random.randint() function is used to generate random integers within a specified range. It allows you to create arrays of any shape filled with random integer values, making it useful in simulations, testing, and numerical experiments.
Example:
Input: Generate integers between 0 and 5
Output: [3 1 4 0 2]
Explanation: Each value is a random integer from the interval [0, 5).
Syntax
numpy.random.randint(low, high=None, size=None, dtype=int)
Parameters:
- low: lowest integer that can appear in the output.
- high(Optional): Upper limit (exclusive). If omitted, range becomes [0, low).
- size(Optional): Shape of the output array (e.g., 5, (2,3), (2,3,4)).
- dtype(Optional): Data type of the returned numbers. Default is integer.
Examples
Example 1: This example generates five random integers between 0 and 4, stored in a one-dimensional array.
import numpy as np
arr = np.random.randint(0, 5, size=5)
print(arr)
Output
[2 2 3 3 4]
Example 2: This example creates a 2×3 matrix of random integers ranging from 0 to 9.
import numpy as np
arr = np.random.randint(0, 10, size=(2, 3))
print(arr)
Output
[[7 9 8] [9 1 1]]
Explanation:
- size=(2, 3): creates 2 rows and 3 columns.
- 0 to 10: upper limit 10 is excluded.
Example 3: This example produces a 3D array (2×2×4) with values between 5 and 15.
import numpy as np
arr = np.random.randint(5, 15, size=(2, 2, 4))
print(arr)
Output
[[[ 8 7 12 12] [ 6 13 13 6]] [[11 6 6 7] [ 7 9 6 8]]]