代码拉取完成,页面将自动刷新
同步操作将从 小墨/力扣题库(完整版) 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
<p>On an <code>n x n</code> chessboard, a knight starts at the cell <code>(row, column)</code> and attempts to make exactly <code>k</code> moves. The rows and columns are <strong>0-indexed</strong>, so the top-left cell is <code>(0, 0)</code>, and the bottom-right cell is <code>(n - 1, n - 1)</code>.</p>
<p>A chess knight has eight possible moves it can make, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction.</p>
<img src="https://assets.leetcode.com/uploads/2018/10/12/knight.png" style="width: 300px; height: 300px;" />
<p>Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.</p>
<p>The knight continues moving until it has made exactly <code>k</code> moves or has moved off the chessboard.</p>
<p>Return <em>the probability that the knight remains on the board after it has stopped moving</em>.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 3, k = 2, row = 0, column = 0
<strong>Output:</strong> 0.06250
<strong>Explanation:</strong> There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 1, k = 0, row = 0, column = 0
<strong>Output:</strong> 1.00000
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 25</code></li>
<li><code>0 <= k <= 100</code></li>
<li><code>0 <= row, column <= n</code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。