Fetch the repository succeeded.
This action will force synchronization from 小墨/力扣题库(完整版), which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
<p>A <code>k x k</code> <strong>magic square</strong> is a <code>k x k</code> grid filled with integers such that every row sum, every column sum, and both diagonal sums are <strong>all equal</strong>. The integers in the magic square <strong>do not have to be distinct</strong>. Every <code>1 x 1</code> grid is trivially a <strong>magic square</strong>.</p>
<p>Given an <code>m x n</code> integer <code>grid</code>, return <em>the <strong>size</strong> (i.e., the side length </em><code>k</code><em>) of the <strong>largest magic square</strong> that can be found within this grid</em>.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2021/05/29/magicsquare-grid.jpg" style="width: 413px; height: 335px;" />
<pre>
<strong>Input:</strong> grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]
<strong>Output:</strong> 3
<strong>Explanation:</strong> The largest magic square has a size of 3.
Every row sum, column sum, and diagonal sum of this magic square is equal to 12.
- Row sums: 5+1+6 = 5+4+3 = 2+7+3 = 12
- Column sums: 5+5+2 = 1+4+7 = 6+3+3 = 12
- Diagonal sums: 5+4+3 = 6+4+2 = 12
</pre>
<p><strong>Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2021/05/29/magicsquare2-grid.jpg" style="width: 333px; height: 255px;" />
<pre>
<strong>Input:</strong> grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
<strong>Output:</strong> 2
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == grid.length</code></li>
<li><code>n == grid[i].length</code></li>
<li><code>1 <= m, n <= 50</code></li>
<li><code>1 <= grid[i][j] <= 10<sup>6</sup></code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。