代码拉取完成,页面将自动刷新
同步操作将从 小墨/力扣题库(完整版) 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
<p>You are given a positive integer <code>primeFactors</code>. You are asked to construct a positive integer <code>n</code> that satisfies the following conditions:</p>
<ul>
<li>The number of prime factors of <code>n</code> (not necessarily distinct) is <strong>at most</strong> <code>primeFactors</code>.</li>
<li>The number of nice divisors of <code>n</code> is maximized. Note that a divisor of <code>n</code> is <strong>nice</strong> if it is divisible by every prime factor of <code>n</code>. For example, if <code>n = 12</code>, then its prime factors are <code>[2,2,3]</code>, then <code>6</code> and <code>12</code> are nice divisors, while <code>3</code> and <code>4</code> are not.</li>
</ul>
<p>Return <em>the number of nice divisors of</em> <code>n</code>. Since that number can be too large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p>Note that a prime number is a natural number greater than <code>1</code> that is not a product of two smaller natural numbers. The prime factors of a number <code>n</code> is a list of prime numbers such that their product equals <code>n</code>.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> primeFactors = 5
<strong>Output:</strong> 6
<strong>Explanation:</strong> 200 is a valid value of n.
It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200].
There is not other value of n that has at most 5 prime factors and more nice divisors.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> primeFactors = 8
<strong>Output:</strong> 18
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= primeFactors <= 10<sup>9</sup></code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。