代码拉取完成,页面将自动刷新
同步操作将从 小墨/力扣题库(完整版) 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
<p>Given the <code>root</code> of a binary tree, return <em>the <strong>maximum width</strong> of the given tree</em>.</p>
<p>The <strong>maximum width</strong> of a tree is the maximum <strong>width</strong> among all levels.</p>
<p>The <strong>width</strong> of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes that would be present in a complete binary tree extending down to that level are also counted into the length calculation.</p>
<p>It is <strong>guaranteed</strong> that the answer will in the range of a <strong>32-bit</strong> signed integer.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2021/05/03/width1-tree.jpg" style="width: 359px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,3,2,5,3,null,9]
<strong>Output:</strong> 4
<strong>Explanation:</strong> The maximum width exists in the third level with length 4 (5,3,null,9).
</pre>
<p><strong>Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2022/03/14/maximum-width-of-binary-tree-v3.jpg" style="width: 442px; height: 422px;" />
<pre>
<strong>Input:</strong> root = [1,3,2,5,null,null,9,6,null,7]
<strong>Output:</strong> 7
<strong>Explanation:</strong> The maximum width exists in the fourth level with length 7 (6,null,null,null,null,null,7).
</pre>
<p><strong>Example 3:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2021/05/03/width3-tree.jpg" style="width: 289px; height: 299px;" />
<pre>
<strong>Input:</strong> root = [1,3,2,5]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The maximum width exists in the second level with length 2 (3,2).
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[1, 3000]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。