代码拉取完成,页面将自动刷新
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> of size <code>n</code> representing the cost of collecting different chocolates. The cost of collecting the chocolate at the index <code>i</code> is <code>nums[i]</code>. Each chocolate is of a different type, and initially, the chocolate at the index <code>i</code> is of <code>i<sup>th</sup></code> type.</p>
<p>In one operation, you can do the following with an incurred <strong>cost</strong> of <code>x</code>:</p>
<ul>
<li>Simultaneously change the chocolate of <code>i<sup>th</sup></code> type to <code>((i + 1) mod n)<sup>th</sup></code> type for all chocolates.</li>
</ul>
<p>Return <em>the minimum cost to collect chocolates of all types, given that you can perform as many operations as you would like.</em></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [20,1,15], x = 5
<strong>Output:</strong> 13
<strong>Explanation:</strong> Initially, the chocolate types are [0,1,2]. We will buy the 1<sup>st</sup> type of chocolate at a cost of 1.
Now, we will perform the operation at a cost of 5, and the types of chocolates will become [1,2,0]. We will buy the 2<sup>nd</sup><sup> </sup>type of chocolate at a cost of 1.
Now, we will again perform the operation at a cost of 5, and the chocolate types will become [2,0,1]. We will buy the 0<sup>th </sup>type of chocolate at a cost of 1.
Thus, the total cost will become (1 + 5 + 1 + 5 + 1) = 13. We can prove that this is optimal.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3], x = 4
<strong>Output:</strong> 6
<strong>Explanation:</strong> We will collect all three types of chocolates at their own price without performing any operations. Therefore, the total cost is 1 + 2 + 3 = 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 1000</code></li>
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= x <= 10<sup>9</sup></code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。