代码拉取完成,页面将自动刷新
<p>Given a <strong>0-indexed</strong> 2D integer matrix <code><font face="monospace">grid</font></code><font face="monospace"> </font>of size <code>n * m</code>, we define a <strong>0-indexed</strong> 2D matrix <code>p</code> of size <code>n * m</code> as the <strong>product</strong> matrix of <code>grid</code> if the following condition is met:</p>
<ul>
<li>Each element <code>p[i][j]</code> is calculated as the product of all elements in <code>grid</code> except for the element <code>grid[i][j]</code>. This product is then taken modulo <code><font face="monospace">12345</font></code>.</li>
</ul>
<p>Return <em>the product matrix of</em> <code><font face="monospace">grid</font></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> grid = [[1,2],[3,4]]
<strong>Output:</strong> [[24,12],[8,6]]
<strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24
p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12
p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8
p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6
So the answer is [[24,12],[8,6]].</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> grid = [[12345],[2],[1]]
<strong>Output:</strong> [[2],[0],[0]]
<strong>Explanation:</strong> p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2.
p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0.
p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0.
So the answer is [[2],[0],[0]].</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n == grid.length <= 10<sup>5</sup></code></li>
<li><code>1 <= m == grid[i].length <= 10<sup>5</sup></code></li>
<li><code>2 <= n * m <= 10<sup>5</sup></code></li>
<li><code>1 <= grid[i][j] <= 10<sup>9</sup></code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。