Fetch the repository succeeded.
<p>Given an integer <code>n</code>, return <em>an array </em><code>ans</code><em> of length </em><code>n + 1</code><em> such that for each </em><code>i</code><em> </em>(<code>0 <= i <= n</code>)<em>, </em><code>ans[i]</code><em> is the <strong>number of </strong></em><code>1</code><em><strong>'s</strong> in the binary representation of </em><code>i</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> [0,1,1]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 5
<strong>Output:</strong> [0,1,1,2,1,2]
<strong>Explanation:</strong>
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 10<sup>5</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong></p>
<ul>
<li>It is very easy to come up with a solution with a runtime of <code>O(n log n)</code>. Can you do it in linear time <code>O(n)</code> and possibly in a single pass?</li>
<li>Can you do it without using any built-in function (i.e., like <code>__builtin_popcount</code> in C++)?</li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。