1 Star 41 Fork 18

小墨/力扣题库(完整版)

Create your Gitee Account
Explore and code with more than 13.5 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
counting-bits.html 1.25 KB
Copy Edit Raw Blame History
小墨 authored 2023-12-09 18:42 +08:00 . 存量题库数据更新
<p>Given an integer <code>n</code>, return <em>an array </em><code>ans</code><em> of length </em><code>n + 1</code><em> such that for each </em><code>i</code><em> </em>(<code>0 &lt;= i &lt;= n</code>)<em>, </em><code>ans[i]</code><em> is the <strong>number of </strong></em><code>1</code><em><strong>&#39;s</strong> in the binary representation of </em><code>i</code>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> [0,1,1]
<strong>Explanation:</strong>
0 --&gt; 0
1 --&gt; 1
2 --&gt; 10
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 5
<strong>Output:</strong> [0,1,1,2,1,2]
<strong>Explanation:</strong>
0 --&gt; 0
1 --&gt; 1
2 --&gt; 10
3 --&gt; 11
4 --&gt; 100
5 --&gt; 101
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 &lt;= n &lt;= 10<sup>5</sup></code></li>
</ul>
<p>&nbsp;</p>
<p><strong>Follow up:</strong></p>
<ul>
<li>It is very easy to come up with a solution with a runtime of <code>O(n log n)</code>. Can you do it in linear time <code>O(n)</code> and possibly in a single pass?</li>
<li>Can you do it without using any built-in function (i.e., like <code>__builtin_popcount</code> in C++)?</li>
</ul>
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/coder-xiaomo/leetcode-problemset.git
git@gitee.com:coder-xiaomo/leetcode-problemset.git
coder-xiaomo
leetcode-problemset
力扣题库(完整版)
master

Search