代码拉取完成,页面将自动刷新
<p>The <b>Fibonacci numbers</b>, commonly denoted <code>F(n)</code> form a sequence, called the <b>Fibonacci sequence</b>, such that each number is the sum of the two preceding ones, starting from <code>0</code> and <code>1</code>. That is,</p>
<pre>
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
</pre>
<p>Given <code>n</code>, calculate <code>F(n)</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> 1
<strong>Explanation:</strong> F(2) = F(1) + F(0) = 1 + 0 = 1.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> 2
<strong>Explanation:</strong> F(3) = F(2) + F(1) = 1 + 1 = 2.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 4
<strong>Output:</strong> 3
<strong>Explanation:</strong> F(4) = F(3) + F(2) = 2 + 1 = 3.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 30</code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。