代码拉取完成,页面将自动刷新
<pre>
DataFrame <code>products</code>
+-------------+--------+
| Column Name | Type |
+-------------+--------+
| name | object |
| quantity | int |
| price | int |
+-------------+--------+
</pre>
<p>Write a solution to fill in the missing value as <code><strong>0</strong></code> in the <code>quantity</code> column.</p>
<p>The result format is in the following example.</p>
<p> </p>
<pre>
<strong class="example">Example 1:</strong>
<strong>Input:</strong>+-----------------+----------+-------+
| name | quantity | price |
+-----------------+----------+-------+
| Wristwatch | None | 135 |
| WirelessEarbuds | None | 821 |
| GolfClubs | 779 | 9319 |
| Printer | 849 | 3051 |
+-----------------+----------+-------+
<strong>Output:
</strong>+-----------------+----------+-------+
| name | quantity | price |
+-----------------+----------+-------+
| Wristwatch | 0 | 135 |
| WirelessEarbuds | 0 | 821 |
| GolfClubs | 779 | 9319 |
| Printer | 849 | 3051 |
+-----------------+----------+-------+
<strong>Explanation:</strong>
The quantity for Wristwatch and WirelessEarbuds are filled by 0.</pre>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。