Fetch the repository succeeded.
<p>Given an integer <code>k</code>, <em>return the minimum number of Fibonacci numbers whose sum is equal to </em><code>k</code>. The same Fibonacci number can be used multiple times.</p>
<p>The Fibonacci numbers are defined as:</p>
<ul>
<li><code>F<sub>1</sub> = 1</code></li>
<li><code>F<sub>2</sub> = 1</code></li>
<li><code>F<sub>n</sub> = F<sub>n-1</sub> + F<sub>n-2</sub></code> for <code>n > 2.</code></li>
</ul>
It is guaranteed that for the given constraints we can always find such Fibonacci numbers that sum up to <code>k</code>.
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 7
<strong>Output:</strong> 2
<strong>Explanation:</strong> The Fibonacci numbers are: 1, 1, 2, 3, 5, 8, 13, ...
For k = 7 we can use 2 + 5 = 7.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 10
<strong>Output:</strong> 2
<strong>Explanation:</strong> For k = 10 we can use 2 + 8 = 10.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 19
<strong>Output:</strong> 3
<strong>Explanation:</strong> For k = 19 we can use 1 + 5 + 13 = 19.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= 10<sup>9</sup></code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。