代码拉取完成,页面将自动刷新
<p>You are given positive integers <code>n</code> and <code>target</code>.</p>
<p>An array <code>nums</code> is <strong>beautiful</strong> if it meets the following conditions:</p>
<ul>
<li><code>nums.length == n</code>.</li>
<li><code>nums</code> consists of pairwise <strong>distinct</strong> <strong>positive</strong> integers.</li>
<li>There doesn't exist two <strong>distinct</strong> indices, <code>i</code> and <code>j</code>, in the range <code>[0, n - 1]</code>, such that <code>nums[i] + nums[j] == target</code>.</li>
</ul>
<p>Return <em>the <strong>minimum</strong> possible sum that a beautiful array could have modulo </em><code>10<sup>9</sup> + 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 2, target = 3
<strong>Output:</strong> 4
<strong>Explanation:</strong> We can see that nums = [1,3] is beautiful.
- The array nums has length n = 2.
- The array nums consists of pairwise distinct positive integers.
- There doesn't exist two distinct indices, i and j, with nums[i] + nums[j] == 3.
It can be proven that 4 is the minimum possible sum that a beautiful array could have.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, target = 3
<strong>Output:</strong> 8
<strong>Explanation:</strong> We can see that nums = [1,3,4] is beautiful.
- The array nums has length n = 3.
- The array nums consists of pairwise distinct positive integers.
- There doesn't exist two distinct indices, i and j, with nums[i] + nums[j] == 3.
It can be proven that 8 is the minimum possible sum that a beautiful array could have.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1, target = 1
<strong>Output:</strong> 1
<strong>Explanation:</strong> We can see, that nums = [1] is beautiful.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 10<sup>9</sup></code></li>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。