代码拉取完成,页面将自动刷新
<p>Given an undirected tree consisting of <code>n</code> vertices numbered from <code>1</code> to <code>n</code>. A frog starts jumping from <strong>vertex 1</strong>. In one second, the frog jumps from its current vertex to another <strong>unvisited</strong> vertex if they are directly connected. The frog can not jump back to a visited vertex. In case the frog can jump to several vertices, it jumps randomly to one of them with the same probability. Otherwise, when the frog can not jump to any unvisited vertex, it jumps forever on the same vertex.</p>
<p>The edges of the undirected tree are given in the array <code>edges</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> means that exists an edge connecting the vertices <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code>.</p>
<p><em>Return the probability that after <code>t</code> seconds the frog is on the vertex <code>target</code>. </em>Answers within <code>10<sup>-5</sup></code> of the actual answer will be accepted.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2021/12/21/frog1.jpg" style="width: 338px; height: 304px;" />
<pre>
<strong>Input:</strong> n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 2, target = 4
<strong>Output:</strong> 0.16666666666666666
<strong>Explanation:</strong> The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 probability to the vertex 2 after <strong>second 1</strong> and then jumping with 1/2 probability to vertex 4 after <strong>second 2</strong>. Thus the probability for the frog is on the vertex 4 after 2 seconds is 1/3 * 1/2 = 1/6 = 0.16666666666666666.
</pre>
<p><strong class="example">Example 2:</strong></p>
<strong><img alt="" src="https://assets.leetcode.com/uploads/2021/12/21/frog2.jpg" style="width: 304px; height: 304px;" /></strong>
<pre>
<strong>Input:</strong> n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 1, target = 7
<strong>Output:</strong> 0.3333333333333333
<strong>Explanation: </strong>The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 = 0.3333333333333333 probability to the vertex 7 after <strong>second 1</strong>.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 100</code></li>
<li><code>edges.length == n - 1</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>1 <= a<sub>i</sub>, b<sub>i</sub> <= n</code></li>
<li><code>1 <= t <= 50</code></li>
<li><code>1 <= target <= n</code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。