Fetch the repository succeeded.
This action will force synchronization from 小墨/力扣题库(完整版), which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
<p>There is a <strong>directed weighted</strong> graph that consists of <code>n</code> nodes numbered from <code>0</code> to <code>n - 1</code>. The edges of the graph are initially represented by the given array <code>edges</code> where <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>, edgeCost<sub>i</sub>]</code> meaning that there is an edge from <code>from<sub>i</sub></code> to <code>to<sub>i</sub></code> with the cost <code>edgeCost<sub>i</sub></code>.</p>
<p>Implement the <code>Graph</code> class:</p>
<ul>
<li><code>Graph(int n, int[][] edges)</code> initializes the object with <code>n</code> nodes and the given edges.</li>
<li><code>addEdge(int[] edge)</code> adds an edge to the list of edges where <code>edge = [from, to, edgeCost]</code>. It is guaranteed that there is no edge between the two nodes before adding this one.</li>
<li><code>int shortestPath(int node1, int node2)</code> returns the <strong>minimum</strong> cost of a path from <code>node1</code> to <code>node2</code>. If no path exists, return <code>-1</code>. The cost of a path is the sum of the costs of the edges in the path.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2023/01/11/graph3drawio-2.png" style="width: 621px; height: 191px;" />
<pre>
<strong>Input</strong>
["Graph", "shortestPath", "shortestPath", "addEdge", "shortestPath"]
[[4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]], [3, 2], [0, 3], [[1, 3, 4]], [0, 3]]
<strong>Output</strong>
[null, 6, -1, null, 6]
<strong>Explanation</strong>
Graph g = new Graph(4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]);
g.shortestPath(3, 2); // return 6. The shortest path from 3 to 2 in the first diagram above is 3 -> 0 -> 1 -> 2 with a total cost of 3 + 2 + 1 = 6.
g.shortestPath(0, 3); // return -1. There is no path from 0 to 3.
g.addEdge([1, 3, 4]); // We add an edge from node 1 to node 3, and we get the second diagram above.
g.shortestPath(0, 3); // return 6. The shortest path from 0 to 3 now is 0 -> 1 -> 3 with a total cost of 2 + 4 = 6.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 100</code></li>
<li><code>0 <= edges.length <= n * (n - 1)</code></li>
<li><code>edges[i].length == edge.length == 3</code></li>
<li><code>0 <= from<sub>i</sub>, to<sub>i</sub>, from, to, node1, node2 <= n - 1</code></li>
<li><code>1 <= edgeCost<sub>i</sub>, edgeCost <= 10<sup>6</sup></code></li>
<li>There are no repeated edges and no self-loops in the graph at any point.</li>
<li>At most <code>100</code> calls will be made for <code>addEdge</code>.</li>
<li>At most <code>100</code> calls will be made for <code>shortestPath</code>.</li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。