Fetch the repository succeeded.
This action will force synchronization from 小墨/力扣题库(完整版), which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
<p>Given a weighted undirected connected graph with <code>n</code> vertices numbered from <code>0</code> to <code>n - 1</code>, and an array <code>edges</code> where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>, weight<sub>i</sub>]</code> represents a bidirectional and weighted edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code>. A minimum spanning tree (MST) is a subset of the graph's edges that connects all vertices without cycles and with the minimum possible total edge weight.</p>
<p>Find <em>all the critical and pseudo-critical edges in the given graph's minimum spanning tree (MST)</em>. An MST edge whose deletion from the graph would cause the MST weight to increase is called a <em>critical edge</em>. On the other hand, a pseudo-critical edge is that which can appear in some MSTs but not all.</p>
<p>Note that you can return the indices of the edges in any order.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<p><img alt="" src="https://assets.leetcode.com/uploads/2020/06/04/ex1.png" style="width: 259px; height: 262px;" /></p>
<pre>
<strong>Input:</strong> n = 5, edges = [[0,1,1],[1,2,1],[2,3,2],[0,3,2],[0,4,3],[3,4,3],[1,4,6]]
<strong>Output:</strong> [[0,1],[2,3,4,5]]
<strong>Explanation:</strong> The figure above describes the graph.
The following figure shows all the possible MSTs:
<img alt="" src="https://assets.leetcode.com/uploads/2020/06/04/msts.png" style="width: 540px; height: 553px;" />
Notice that the two edges 0 and 1 appear in all MSTs, therefore they are critical edges, so we return them in the first list of the output.
The edges 2, 3, 4, and 5 are only part of some MSTs, therefore they are considered pseudo-critical edges. We add them to the second list of the output.
</pre>
<p><strong>Example 2:</strong></p>
<p><img alt="" src="https://assets.leetcode.com/uploads/2020/06/04/ex2.png" style="width: 247px; height: 253px;" /></p>
<pre>
<strong>Input:</strong> n = 4, edges = [[0,1,1],[1,2,1],[2,3,1],[0,3,1]]
<strong>Output:</strong> [[],[0,1,2,3]]
<strong>Explanation:</strong> We can observe that since all 4 edges have equal weight, choosing any 3 edges from the given 4 will yield an MST. Therefore all 4 edges are pseudo-critical.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= n <= 100</code></li>
<li><code>1 <= edges.length <= min(200, n * (n - 1) / 2)</code></li>
<li><code>edges[i].length == 3</code></li>
<li><code>0 <= a<sub>i</sub> < b<sub>i</sub> < n</code></li>
<li><code>1 <= weight<sub>i</sub> <= 1000</code></li>
<li>All pairs <code>(a<sub>i</sub>, b<sub>i</sub>)</code> are <strong>distinct</strong>.</li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。