Fetch the repository succeeded.
This action will force synchronization from 小墨/力扣题库(完整版), which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
<p>There is a directed graph of <code>n</code> nodes with each node labeled from <code>0</code> to <code>n - 1</code>. The graph is represented by a <strong>0-indexed</strong> 2D integer array <code>graph</code> where <code>graph[i]</code> is an integer array of nodes adjacent to node <code>i</code>, meaning there is an edge from node <code>i</code> to each node in <code>graph[i]</code>.</p>
<p>A node is a <strong>terminal node</strong> if there are no outgoing edges. A node is a <strong>safe node</strong> if every possible path starting from that node leads to a <strong>terminal node</strong>.</p>
<p>Return <em>an array containing all the <strong>safe nodes</strong> of the graph</em>. The answer should be sorted in <strong>ascending</strong> order.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<img alt="Illustration of graph" src="https://s3-lc-upload.s3.amazonaws.com/uploads/2018/03/17/picture1.png" style="height: 171px; width: 600px;" />
<pre>
<strong>Input:</strong> graph = [[1,2],[2,3],[5],[0],[5],[],[]]
<strong>Output:</strong> [2,4,5,6]
<strong>Explanation:</strong> The given graph is shown above.
Nodes 5 and 6 are terminal nodes as there are no outgoing edges from either of them.
Every path starting at nodes 2, 4, 5, and 6 all lead to either node 5 or 6.</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> graph = [[1,2,3,4],[1,2],[3,4],[0,4],[]]
<strong>Output:</strong> [4]
<strong>Explanation:</strong>
Only node 4 is a terminal node, and every path starting at node 4 leads to node 4.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == graph.length</code></li>
<li><code>1 <= n <= 10<sup>4</sup></code></li>
<li><code>0 <= graph[i].length <= n</code></li>
<li><code>0 <= graph[i][j] <= n - 1</code></li>
<li><code>graph[i]</code> is sorted in a strictly increasing order.</li>
<li>The graph may contain self-loops.</li>
<li>The number of edges in the graph will be in the range <code>[1, 4 * 10<sup>4</sup>]</code>.</li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。