代码拉取完成,页面将自动刷新
同步操作将从 小墨/力扣题库(完整版) 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
<p>Given an integer array <code>nums</code> and two integers <code>k</code> and <code>p</code>, return <em>the number of <strong>distinct subarrays</strong> which have <strong>at most</strong></em> <code>k</code> <em>elements divisible by</em> <code>p</code>.</p>
<p>Two arrays <code>nums1</code> and <code>nums2</code> are said to be <strong>distinct</strong> if:</p>
<ul>
<li>They are of <strong>different</strong> lengths, or</li>
<li>There exists <strong>at least</strong> one index <code>i</code> where <code>nums1[i] != nums2[i]</code>.</li>
</ul>
<p>A <strong>subarray</strong> is defined as a <strong>non-empty</strong> contiguous sequence of elements in an array.</p>
<p> </p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [<u><strong>2</strong></u>,3,3,<u><strong>2</strong></u>,<u><strong>2</strong></u>], k = 2, p = 2
<strong>Output:</strong> 11
<strong>Explanation:</strong>
The elements at indices 0, 3, and 4 are divisible by p = 2.
The 11 distinct subarrays which have at most k = 2 elements divisible by 2 are:
[2], [2,3], [2,3,3], [2,3,3,2], [3], [3,3], [3,3,2], [3,3,2,2], [3,2], [3,2,2], and [2,2].
Note that the subarrays [2] and [3] occur more than once in nums, but they should each be counted only once.
The subarray [2,3,3,2,2] should not be counted because it has 3 elements that are divisible by 2.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4], k = 4, p = 1
<strong>Output:</strong> 10
<strong>Explanation:</strong>
All element of nums are divisible by p = 1.
Also, every subarray of nums will have at most 4 elements that are divisible by 1.
Since all subarrays are distinct, the total number of subarrays satisfying all the constraints is 10.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 200</code></li>
<li><code>1 <= nums[i], p <= 200</code></li>
<li><code>1 <= k <= nums.length</code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。