Fetch the repository succeeded.
This action will force synchronization from 小墨/力扣题库(完整版), which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
<p>You are given an array <code>nums</code> of <code>n</code> positive integers and an integer <code>k</code>.</p>
<p>Initially, you start with a score of <code>1</code>. You have to maximize your score by applying the following operation at most <code>k</code> times:</p>
<ul>
<li>Choose any <strong>non-empty</strong> subarray <code>nums[l, ..., r]</code> that you haven't chosen previously.</li>
<li>Choose an element <code>x</code> of <code>nums[l, ..., r]</code> with the highest <strong>prime score</strong>. If multiple such elements exist, choose the one with the smallest index.</li>
<li>Multiply your score by <code>x</code>.</li>
</ul>
<p>Here, <code>nums[l, ..., r]</code> denotes the subarray of <code>nums</code> starting at index <code>l</code> and ending at the index <code>r</code>, both ends being inclusive.</p>
<p>The <strong>prime score</strong> of an integer <code>x</code> is equal to the number of distinct prime factors of <code>x</code>. For example, the prime score of <code>300</code> is <code>3</code> since <code>300 = 2 * 2 * 3 * 5 * 5</code>.</p>
<p>Return <em>the <strong>maximum possible score</strong> after applying at most </em><code>k</code><em> operations</em>.</p>
<p>Since the answer may be large, return it modulo <code>10<sup>9 </sup>+ 7</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [8,3,9,3,8], k = 2
<strong>Output:</strong> 81
<strong>Explanation:</strong> To get a score of 81, we can apply the following operations:
- Choose subarray nums[2, ..., 2]. nums[2] is the only element in this subarray. Hence, we multiply the score by nums[2]. The score becomes 1 * 9 = 9.
- Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 1, but nums[2] has the smaller index. Hence, we multiply the score by nums[2]. The score becomes 9 * 9 = 81.
It can be proven that 81 is the highest score one can obtain.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [19,12,14,6,10,18], k = 3
<strong>Output:</strong> 4788
<strong>Explanation:</strong> To get a score of 4788, we can apply the following operations:
- Choose subarray nums[0, ..., 0]. nums[0] is the only element in this subarray. Hence, we multiply the score by nums[0]. The score becomes 1 * 19 = 19.
- Choose subarray nums[5, ..., 5]. nums[5] is the only element in this subarray. Hence, we multiply the score by nums[5]. The score becomes 19 * 18 = 342.
- Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 2, but nums[2] has the smaller index. Hence, we multipy the score by nums[2]. The score becomes 342 * 14 = 4788.
It can be proven that 4788 is the highest score one can obtain.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length == n <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
<li><code>1 <= k <= min(n * (n + 1) / 2, 10<sup>9</sup>)</code></li>
</ul>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。