diff --git a/Scripts/Miscellaneous/Prograamming Quiz GUI/Dashboard.jpg b/Scripts/Miscellaneous/Prograamming Quiz GUI/Dashboard.jpg
new file mode 100644
index 000000000..99995a203
Binary files /dev/null and b/Scripts/Miscellaneous/Prograamming Quiz GUI/Dashboard.jpg differ
diff --git a/Scripts/Miscellaneous/Prograamming Quiz GUI/Quiz.py b/Scripts/Miscellaneous/Prograamming Quiz GUI/Quiz.py
new file mode 100644
index 000000000..996b70ef9
--- /dev/null
+++ b/Scripts/Miscellaneous/Prograamming Quiz GUI/Quiz.py
@@ -0,0 +1,101 @@
+from tkinter import *
+from tkinter import messagebox
+from questions import *
+
+class Project:
+ def __init__(self):
+ self.que=""
+ self.ans=""
+ self.correct=0
+ self.count=-1
+ self.__correct_answer=None
+ self.__answer=None
+ self.__question=None
+
+ def course(self):
+ self.correct=0
+ self.count=-1
+ B.config(text="Start")
+ if s.get()=="Python":
+ self.que=python_que
+ self.ans=python_ans
+ elif s.get()=="C":
+ self.que=c_que
+ self.ans=c_ans
+
+
+ def set_(self):
+ if self.que=="":
+ messagebox.showinfo("Error","Please select course first...")
+ return
+ self.count+=1
+
+ if self.count==len(self.que):
+ messagebox.showinfo("Result","You have answered {0} out of {1} questions correctly".format(self.correct,self.count))
+ sys.exit()
+
+ if(self.count==len(self.que)-1):
+ B.config(text="Finish")
+ else:
+ B.config(text="Next")
+
+ self.__question=self.que[self.count]
+ self.__answer=self.ans[self.__question]
+ l.config(text=self.__question)
+ for i in range(0,4):
+ v[i].set(self.__answer[i])
+ self.__correct_answer=self.__answer[4]
+
+ def fun(self,y,n):
+ if y==self.__correct_answer:
+ self.correct+=1
+ n.config(activebackground="green")
+ else:
+ n.config(activebackground="red")
+ self.set_()
+
+
+
+obj=Project()
+scr=Tk(className="quiz")
+s=StringVar()
+main_menu=Menu(scr)
+file_menu=Menu(main_menu,tearoff=0)
+
+course_menu=Menu(file_menu,tearoff=0)
+course_menu.add_radiobutton(label="Python",value="Python",variable=s,command=obj.course)
+course_menu.add_radiobutton(label="C",value="C",variable=s,command=obj.course)
+
+file_menu.add_cascade(label="Course",menu=course_menu)
+file_menu.add_command(label="Exit",command=exit)
+main_menu.add_cascade(label="file",menu=file_menu)
+scr.config(menu=main_menu)
+
+l=Label(scr,font=("consolas",20),relief="groove",width=40,height=2,wraplength=600,bg="steel blue")
+l.grid(row=0,column=0,columnspan=20,sticky="news")
+
+b=[]
+for i in range(0,4):
+ b.append(Button())
+v=[]
+for i in range(0,4):
+ v.append(StringVar())
+
+
+b[0]=Button(scr,textvariable=v[0],font=("consolas",20),anchor="w",width=20,activebackground="light blue",command=lambda :obj.fun(v[0].get(),b[0]))
+b[0].grid(row=2,column=0,sticky=W)
+
+b[1]=Button(scr,textvariable=v[1],font=("consolas",20),anchor="w",width=20,command=lambda :obj.fun(v[1].get(),b[1]))
+b[1].grid(row=2,column=1,sticky=S)
+
+b[2]=Button(scr,textvariable=v[2],font=("consolas",20),anchor="w",width=20,command=lambda :obj.fun(v[2].get(),b[2]))
+b[2].grid(row=3,column=0,sticky=W)
+
+b[3]=Button(scr,textvariable=v[3],font=("consolas",20),anchor="w",width=20,command=lambda :obj.fun(v[3].get(),b[3]))
+b[3].grid(row=3,column=1,sticky=S)
+
+B=Button(scr,text="Start",font=("consolas",20),width=40,height=1,bg="black",fg="white",command=obj.set_)
+B.grid(row=10,column=0,columnspan=2,sticky="news")
+#B.geometry('{0}x{1}+0+0'.format(scr.winfo_screenwidth(),200))
+
+scr.mainloop()
diff --git a/Scripts/Miscellaneous/Prograamming Quiz GUI/README.md b/Scripts/Miscellaneous/Prograamming Quiz GUI/README.md
new file mode 100644
index 000000000..24d858d02
--- /dev/null
+++ b/Scripts/Miscellaneous/Prograamming Quiz GUI/README.md
@@ -0,0 +1,43 @@
+# Programming Quiz Project
+The project is about developing a quiz of 10 questions using python programming language on graphical user interphase.
+
+### Prerequisites
+1. Tkinter
+
+
+### How to run the script
+
Download the prerequisited library using `pip install tkinter` command on the terminal/command prompt
+
Run the Graphical user Interphase using `python Quiz.py`
+
Go to file menu to select the programming language for the quiz.
+
Click on start button to proceed with the quiz
+
+
+
+
After successful submission, a popup will display the result
+
+ 
+
+### Quiz Enhancement
+
+
Changes in questions.py-:
+ 1. Add questions que dictonary (eg java_que={0 : ...,1 : ...})
+
+ 2. Add option and answer to the answer dictonary ( eg java_ans={question : [options , correct answer]})
+
+
Changes in Quiz.py
+ 1. Add th course to the course() function (Line 15)
+
+ elif s.get()=="Java":
+
+ self.que=java_que
+ self.ans=java_ans
+
+ 2. Add course to the file menu (Line 65)
+
+ course_menu.add_radiobutton(label="Java",value="Java",variable=s,command=obj.course)
+
+
Save and run the script using the instructions given above
+
+
+ ## *Author Name*
+[Pulkit Dhingra](https://github.com/Pulkit12dhingra)
diff --git a/Scripts/Miscellaneous/Prograamming Quiz GUI/__pycache__/questions.cpython-36.pyc b/Scripts/Miscellaneous/Prograamming Quiz GUI/__pycache__/questions.cpython-36.pyc
new file mode 100644
index 000000000..897a7e290
Binary files /dev/null and b/Scripts/Miscellaneous/Prograamming Quiz GUI/__pycache__/questions.cpython-36.pyc differ
diff --git a/Scripts/Miscellaneous/Prograamming Quiz GUI/__pycache__/questions.cpython-39.pyc b/Scripts/Miscellaneous/Prograamming Quiz GUI/__pycache__/questions.cpython-39.pyc
new file mode 100644
index 000000000..3e03ac108
Binary files /dev/null and b/Scripts/Miscellaneous/Prograamming Quiz GUI/__pycache__/questions.cpython-39.pyc differ
diff --git a/Scripts/Miscellaneous/Prograamming Quiz GUI/popup.jpg b/Scripts/Miscellaneous/Prograamming Quiz GUI/popup.jpg
new file mode 100644
index 000000000..100ea24a2
Binary files /dev/null and b/Scripts/Miscellaneous/Prograamming Quiz GUI/popup.jpg differ
diff --git a/Scripts/Miscellaneous/Prograamming Quiz GUI/questions.py b/Scripts/Miscellaneous/Prograamming Quiz GUI/questions.py
new file mode 100644
index 000000000..7766ebde1
--- /dev/null
+++ b/Scripts/Miscellaneous/Prograamming Quiz GUI/questions.py
@@ -0,0 +1,49 @@
+python_que={
+ 0:"What is python",
+ 1:"Who is founder of Python",
+ 2:"What is variable",
+ 3:"What is symbol of List",
+ 4:"What is symbol of tuple",
+ 5:"What is symbol of Set",
+ 6:"What is symbol of dictionary",
+ 7:"Python was launched in..",
+ 8:"Latest Version of python is..",
+ 9:"Python is suitable for.."
+ }
+python_ans={
+ "What is variable":["Container","Object","Class","Structure","Object"],
+ "What is symbol of List":["( )","{ }","[ ]","None of the above","[ ]"],
+ "What is symbol of tuple":["( )","{ }","[ ]","None of the above","( )"],
+ "What is symbol of Set":["( )","{ }","[ ]","None of the above","{ }"],
+ "What is symbol of dictionary":["( )","{ }","[ ]","None of the above","{ }"],
+ "Who is founder of Python":["Steve Jobs","James Gosling","Guido von Rossum","Dennis Richie","Guido von Rossum"],
+ "Python was launched in..":["1990","2003","1980","1996","1990"],
+ "What is python":["Scripting language","Programming language","Markup Language","Snake","Programming language"],
+ "Latest Version of python is..":["3.8.4","3.9.5","3.8.9","3.9.0","3.9.0"],
+ "Python is suitable for..":["GUI Application","Web application","Android","All of these","All of these"]}
+
+c_que={
+ 0:"What is c",
+ 1:"Who is father of c",
+ 2:"What is strength of C language",
+ 3:"C was launched in",
+ 4:"What is format specifier of char",
+ 5:"what is size of int in 64 bit os",
+ 6:"what is format specifier of double",
+ 7:"what is size of double",
+ 8:"output of for(;;)",
+ 9:"what is symbol of function"
+ }
+c_ans={
+ "What is c":["Scripting language","Programming language","Markup Language","Snake","Programming language"],
+ "Who is father of c":["Steve Jobs","James Gosling","Guido von Rossum","Dennis Richie","Dennis Richie"],
+ "What is strength of C language":["data structure","Pointer","Speed","B and C both","B and C both"],
+ "C was launched in":["1970","1972","1980","1982","1972"],
+ "What is format specifier of char":["%ch","%c","%char","%chr","%c"],
+ "what is size of int in 64 bit os":["1 byte","8 bit","4 bit","32 bit","4 bit"],
+ "what is format specifier of double":["%d","%l","%lf","%Lf","%d"],
+ "what is size of double":["1 byte","8 bit","8 byte","32 bit","8 byte"],
+ "output of for(;;)":["syntax error","0 iteration","infinite iteration","runtime error","infinite iteration"],
+ "what is symbol of function":["( )","{ }","[ ]","< >","( )"]
+ }
+
diff --git a/Scripts/Miscellaneous/heart attack analysis/README.md b/Scripts/Miscellaneous/heart attack analysis/README.md
new file mode 100644
index 000000000..b99fb001b
--- /dev/null
+++ b/Scripts/Miscellaneous/heart attack analysis/README.md
@@ -0,0 +1,54 @@
+# Heart Attack Analysis & Prediction
+
+# Dataset Information
+
+Heart attacks result in severe medical conditions that may be fatal if not handled correctly. Due to the current lifestyle, heart attacks are much more often than in the past. With the help of modern-day technologies and the capacity of storing the data, we can create a heart attack prediction mechanism that would allow us to measure the chances of having a heart attack on a person.
+
+### Attribute Information:
+
+Input variables: \
+1 - Age : Age of the patient \
+2 - Sex : Sex of the patient \
+3 - exang: exercise induced angina (1 = yes; 0 = no) \
+4 - ca: number of major vessels (0-3) \
+5 - cp : Chest Pain type chest pain type \
+
+
Value 1: typical angina
+
Value 2: atypical angina
+
Value 3: non-anginal pain
+
Value 4: asymptomatic
+
+
+6 - trtbps : resting blood pressure (in mm Hg) \
+7 - chol : cholestoral in mg/dl fetched via BMI sensor \
+8 - Trihalomethanes-> Amount of Trihalomethanes in μg/L \
+9 - fbs : (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) \
+10 - est_ecg : resting electrocardiographic results
+
+
Value 0: normal
+
Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
+
Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
+
+11 - thalach : maximum heart rate achieved
+
+Output variable (based on sensory data): \
+10 - target : 0= less chance of heart attack 1= more chance of heart attack
+
+
+# Libraries
+
+
+
pandas
+
matplotlib
+
seaborn
+
plotly
+
scikit-learn
+
xgboost
+
+# Algorithm
+
XGBoost
+
+
+
+**Model Accuracy:** 80.00
+
diff --git a/Scripts/Miscellaneous/heart attack analysis/heart-attack-analysis-xg-boost.ipynb b/Scripts/Miscellaneous/heart attack analysis/heart-attack-analysis-xg-boost.ipynb
new file mode 100644
index 000000000..dab7e1440
--- /dev/null
+++ b/Scripts/Miscellaneous/heart attack analysis/heart-attack-analysis-xg-boost.ipynb
@@ -0,0 +1 @@
+{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.7.10","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"# This Python 3 environment comes with many helpful analytics libraries installed\n# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n# For example, here's several helpful packages to load\nimport seaborn as sns\nimport plotly.express as px\nimport matplotlib.pyplot as plt\nimport missingno as msno\nimport plotly.graph_objects as go\n\n\nimport numpy as np # linear algebra\nimport pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n\nimport warnings\nwarnings.filterwarnings('ignore')\n\nplt.style.use('fivethirtyeight')\n%matplotlib inline\n# Input data files are available in the read-only \"../input/\" directory\n# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n\nimport os\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n\n# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session","metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","execution":{"iopub.status.busy":"2021-08-24T17:50:38.074908Z","iopub.execute_input":"2021-08-24T17:50:38.075253Z","iopub.status.idle":"2021-08-24T17:50:41.104332Z","shell.execute_reply.started":"2021-08-24T17:50:38.075223Z","shell.execute_reply":"2021-08-24T17:50:41.103401Z"},"trusted":true},"execution_count":2,"outputs":[{"name":"stdout","text":"/kaggle/input/heart-attack-analysis-prediction-dataset/o2Saturation.csv\n/kaggle/input/heart-attack-analysis-prediction-dataset/heart.csv\n","output_type":"stream"}]},{"cell_type":"markdown","source":"## Reading the data","metadata":{}},{"cell_type":"code","source":"data=pd.read_csv('/kaggle/input/heart-attack-analysis-prediction-dataset/heart.csv')\ndata.head()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:41.106138Z","iopub.execute_input":"2021-08-24T17:50:41.106792Z","iopub.status.idle":"2021-08-24T17:50:41.157251Z","shell.execute_reply.started":"2021-08-24T17:50:41.106741Z","shell.execute_reply":"2021-08-24T17:50:41.156071Z"},"trusted":true},"execution_count":3,"outputs":[{"execution_count":3,"output_type":"execute_result","data":{"text/plain":" age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \\\n0 63 1 3 145 233 1 0 150 0 2.3 0 \n1 37 1 2 130 250 0 1 187 0 3.5 0 \n2 41 0 1 130 204 0 0 172 0 1.4 2 \n3 56 1 1 120 236 0 1 178 0 0.8 2 \n4 57 0 0 120 354 0 1 163 1 0.6 2 \n\n caa thall output \n0 0 1 1 \n1 0 2 1 \n2 0 2 1 \n3 0 2 1 \n4 0 2 1 ","text/html":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"### checking for null values","metadata":{}},{"cell_type":"code","source":"\nmsno.bar(data)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:41.267947Z","iopub.execute_input":"2021-08-24T17:50:41.268348Z","iopub.status.idle":"2021-08-24T17:50:42.260698Z","shell.execute_reply.started":"2021-08-24T17:50:41.268305Z","shell.execute_reply":"2021-08-24T17:50:42.259641Z"},"trusted":true},"execution_count":7,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAAYYAAAEWCAYAAABi5jCmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVXUlEQVR4nO3debRkVXXH8e9umYdmUFQ0gopBQAUkEEYDqKylEcQJHBCNIkshTHEFNIkC4rQQMCpGHDAoRo0ScQBFG1FBQWaZ0YCiQcClIShtKyCw88e5xbvn9esH9Du3Xvfz+1mrF1RV991V71XV795z9j03MhNJkkbmzfYTkCQtWwwGSVLFYJAkVQwGSVLFYJAkVVaY7sHd5u1ly5IkzUFn339aLOkxjxgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSRWDQZJUMRgkSZXIzNl+DpKkZYhHDJKkisEgSaoYDJKkisEgSaoYDJKkStNgiIjVWm5vCTX2m3T7ERFx1ID1VoqIzSPiGRGx0lB1evXmRcT8oeuMQ0TsGBGrd///6oh4f0RsOGC9rab4s1FErDBUzbkkItad4r4nzcZzWZ4s4X33wJ+Bah76UO5b6u23aFeNiB2Ak4E1MnODiNgCeGNmHjjjjS9e63PA2sB+wLrAp4BzM/MfB6j1AuCjwE+BAJ5EeV1nNa7zOeBNwH3AJcB84IOZeVzjOlcDU/3CA8jM3LxxvauALYDNKb+nk4G9M3PnlnV69S4EtgKuorympwPXAmsBB2TmgkZ1NgYOBzYEHgidzHx2i+1PqnUGi//OfgdcCnwsM+9qWOt84PmZeWd3ezPgi5n59FY1erUeCRwN7Eh5fT8AjsnM2xvX+UvgvcBmwCqj+zPzyQ1rfHeah3Og98XlmbnVpPt+lJnPbLL9RsFwEfAy4GujJxYR1wzxhuq2/XLg34BFwKsy8/yB6vwY2D0zb+xubwR8PTM3aVzniszcMiL2oXyxvRW4bIAv6mn31jPzF43rXZ6ZW0XEkcAtmfnJqd7QDeudDrw9M6/tbm8GHAMcAZyemVs2qnMlZYfhMkqYA5CZl7XY/qRaHwTWAz7f3fVy4E7Kl+n8zNy3Ya0XUH5WLwCeCpwK7JOZV7Sq0at1NnAe8B/dXfsAu2TmcxvX+QFwFPCvwB7A64B5mXlkyzrjEhGvBF4F7AR8v/fQmsD9mfmcFnWaHWJn5s0R0b/rviX93Zno9gAOBb4EbArs2yXlHwYot3AUCp2fAQsHqLNiRKwIvAj4cGb+KSKan3nY/+KPiMcA23Q3L87MX7euByyMiH8C9gWeFRHzgBUHqDOy8SgUADLzuojYJDN/Num9OVP3ZuZJLTc4jR0yc5ve7TMi4pLM3CYirl3iv1oKmfn17n24gPJF8+LM/O+WNXrWz8x39m6/q9vha23VzDwnIqJ7/x8dEZcBzYIhIl4y3eOZeXqrWsAFwG3Ao4ATevcvpBwpN9EqGG7uhpOye2MdClzfaNuTnQEclJnfjvJpfzNl+OVpA9S6NCK+AXyRsoe2F3DJ6I3Q8Bf+MeDnwJXAed2e/Z2Ntr2YiNgbOA74HmXI5cSIODwz/6txqZdT9m5en5m/iogNurpDuTYiTgL+s1f/uohYGfjTTDfeG4M/IyIOBL4M3D16PDP/b6Y1prBGRGyQmf/TPYcNgDW6x+5pUSAiTqQerlqLMnx6UESQmYe0qDPJgoh4BeWzBWXE4VsD1Lm72yG5ISIOAm5h4ufXyh7TPJZAs2Dowu0XwPattjmVVkNJjwI+CDyX8kWzADi09XhhV2v+aAy0d9/GQ+zZRMQpU9ydTIzJv751zV7tFTLz3oG2fSWw2+goISLWA76dmVsMUOuxwF9Tfm6XZOavWtfo1VoVOJBymA1wPvAR4C5gtcz8/Qy3fxMTv//JsuW4da/m37L4PNeBlFDfPzM/0KDGa6d7PDM/PdMaU9RcCKxOGVkISiPMoomS2aQBIyK2oeykrg28kxJ678vMC1tsf7Z0P7/Rl/dKlCPxRc1+bsvbWkndEMh7gMdn5vO6ceTtM/OTA9T6NCXgftvdXgc4oXUgdBNxR1G+0AabiOvVuzozn9G7PQ+4sn9fozpvoByyf4fy4d+Z8rr+vWWdXr3Vgbsy877u9iOAlQcaZhyb7ohnNK/1k5YTzmqrm6d5GvVE9zED1wxgT2C7zHxrk202OmL40BR3/w64NDO/OuMCda2zgFOAf8nMLbpWxB+1/lLrai02y99y5r+3zbFMxPXqHUfpFOpPaF6VmW9pXOcnlDHy27vbjwQuyMyntqzTq3ch8NzRkUFErAEsyMwdBqi1A/BE6q6kU1vXGWetMXXwTNt4kJmXt6rV1VsPeAuLv6YhOoU+CqwG7ErpwHsZZf5uv2n/Ybv6zb6bWs0xrELZozmtu/1S4CZgi4jYNTMPa1QH4FGZ+cVuUpPMvDciBpnoBuZFxDqZeQc8MMY8RE/8uCbiAMjMwyPipZRWQYCPZ+aXByh1O/Vk/cLuvqGs0h8uyszfxwDn1kTEZ4CNgCuYaLJIShfPcluLssM16uDZla6Dp3GNE6a4r7932voL+7PAFyidVm8CXgv8pnGNkR0yc/OIuCoz3xERJwBNW9tHJk14zwO2pgyZNtHqS25zYMfeIfxJlFaqnYCrG9UYWdTteWZXazvK0ckQTgB+GBGjwNsLePcAdcY1EfeAzPwSpbOruYh4c/e/NwIXRcRXKb+vPWnYOTGFRRGx1WivMyL+CvjjAHW2BjbL8YzDjrPW4B08mbkrPNAA8c3MvDMi3k5p037ntP946Tyya5M+NDPPBc6NiEsGqAMT77U/RMTjKDtB6w9Uqz/hfS+leWXPVhtvFQzrUGb6R1/QqwPrZuZ9EXH3kv/ZUnkz8DVgoygn5KxH+SJtLjNPjYhLmdiLeUlmXjdAqf2Bw5gYSppH+ZJ7Iw0n4ka6vY1jgUdTxv5Hk+mt6jyTEgp7AB/o3d90WHEKhwGnRcStlNf0WMowWWvXdNu+bYBtz2atcXTwjLytO/LfifL5Oh44Cdi2cZ1RN9pt3fj/rZQTY4dwZkSsTem8u5yyM3TyEIUy83VDbHek1RzDfsDbmGh//BvKBPHngaMz8/AZF5motRdlb/oJlCGrbSknNTUdm5zLIuJGYI/MHKSluOuv3w34JrDL5McHausc1V6RcnIWlInaGbep9rY9Ogt5TWBL4GLqdtUXtqrVq/ndMdaa3MEzHzhuiA6e0Xh4RLwXuDozPzfQ/N3ulNGLJwAnUl7T0Zl5Rss6U9RdmTK0OchoRkQ8mdIJuh3lPflD4B8y82dNtt/qCLU7dNqX8sZaA/hlZp7XZON1nau6cbydKG/e44EjM7P1nsZYdXvxo66k72fmVwasdX5m7vjgf3Opt38IcACltfLW/kMM1NbZ1V2NckS5YWbu302mPjUzz2y0/WmX8uiGKppaUs0havVqrjZ0J1dEnEk5ItmNMoz0R8pEbdOW6Sk6C9cFjh+q1XyMjQIXUlZ/GDWQvAI4uNX3YKsjhjdQTmr7C8ok2XbADwea+R/LnsY4RcRHgKdQdwn9NDP/vnGd0YTVzpThia9Q74W2PEOTiDgpMw9ouc0HqfcFyjIVr8nMp3dBcUE2WgqjV+dJwG2jttHu/InHZObPW9bptr3Z5OHLiNglM783QK3tgU8ynjXPVgOeR/kM3xAR6wPPyEbrWfXqjKWzsNvulI0COcAJgqMd5En3XdkqWFsFw9WU5RUuzLLmzybAezJz2lPFl7LWWPY0xinKmkybjiYYu3HeazNz08Z1RifsTXWSVg61FzUuEXFpZm7d/+C3/LD061A6UO7pbq8EnJ/10hWtal1D6UA6jtL99z5g68xsfuZrjHnNs3GIcjLnLpM6C8/NYdrbr2dMjQIRcSxwB+Us/6TsTK5Dt7LATIdrW00+35WZd0UEEbFyZv44IgbpVQf2puxpHJ+Zv+32NJrNYcySG4ENKKe6QxkPvXHJf33pjCaspji8Xoep2wiXN/d0e++jgN2I3hFRQyuMQgEgM++J4ZZk35bSKHABZW7js0y0GTeXY1rzbIzG1VkI420U2Lv77xsn3f8Kyvt/RsO1rYLhl91s/FeAsyPiDia+5Jrqxj5P792+jfH8IpqbNJl5fURc3N3eljLZOJTNR6EAkJl3RMRyOxTXczRlwvsJETH6Ah2ie+M3EfHCzPwaQETsCfzvAHWgdNX8EViVcsRwU2beP1Ctca55Nhbj6Cyc9Dm+rvscD9ooQBlhqM5biIhVJt+3tJovidFNlq1F6VFussjXXDUbk5ld3bEdXo9blHNctqMMlV2Ymc2/sLsjkc8Cj+vq3EyZ12h+lNf9rr5KWT58Pcq6Sfdk5l4D1OqveTaP0v13aA60NMtc0X2Og3Jkd0T/IeDYIRpjYurrMTRb0r75WbxDdkvMNaOfVUQcm5OWo+jGEIf6WY7z8HpsIuKcLOvRf32K+5rJzJ8C20VZcoOc4eJ8D2J/SvvtP2fmMRFxMPCaIQp1IbrPENuey3qf4xUnf/91Q5vNRFmU8vHAqt1R/mjcbz5lOY42dcYwT6IHsYT0X6zroHHNzZg4vP5O68PrcYqIVSgfiu9Szpvof1i+mY0vrNTVHMtiaVFWEbgfeHZmbtrNBy0YaKJ70N74uSoiDqCsePtkyiq4I2tSmhJe3bDWa4G/o5wRf2nvoYXAp1p1FhoMs6j3htqIerK5+RtqLotyrdvDKEM7tzARDHcCn8jMDzeuN7bF0mLiKnj9TqsrWrfgdtsdtDd+roqItSgdQe+lXH1xZOFMu4OmqfnSLMvaDMJgmEWz8YaayyLi4Mw8cQx1RidZjv67BnBWZj5rgFoXATtQrmWxVZTVQhcM1Ic/aG+82omIo5ji+u2tjlpbr5yohyHL6fI3A8/MzF/0/hgKS+dXEbEmQES8LSJOjwdZ5nkpTV4s7U8Mt1jahyhXint0RLybcq2O9wxU66yIeGtEPDEiNoyII4BvRMS6MXH1Oi0bfk+5sNEiSkvx8ylnXDfhEcMyIMrqowdnd/lGLZ2ol0t5F+Vkn+bLpURZDfRE4DmUoZcETs7Mt7es06u3SVcrgHNyuDWubprm4cyBljLRzEVZm+lbmblLk+0ZDLMvIs6jrEh6MROXNxyq/3nOillYLiUGXixNeii6poRLMvMpLbY3xEVn9PCtAuzeuz3qidbDc0tEfIyyXMqx3Zd2s+HSqC+OMvmx5mtNjct0rwvar6GlmeuWIRrt1c+jLKHf7HoWBsOyYYWh+5//TAy9XMoe0zyW9M7IX86MXtejKRPd3+lu70pZimN5fV1z2e6UxpVnUZZJ/0ZmXtZq4wbDLOr3P0dE/8pmawLnz86zWn5l5h8i4teU5ctvoFzZ6oaG2x/04iizpbeG1gLKInC3dbfXBz41i09NS7Yn5eTH0ykjDKdExCdadeU5xzCLbFdtq2vh25pyDYaNu46h03KAa0+M6wS3cYqI67O3om8MtMqvZq7bkdw+Mxd1t1enXOqgyUmxHjHMom7C8nfAK2f7ucwRL6ZM4l8OkJm3jtpXW1rSCW6t68yCcyLiW9TXBfn2LD4fLVlQr3x7H4svpb/UDAbNJfdkZkbEaNnt1Qeqs0PvBLd3RMQJwFkD1RqbzDyom4genaj38cz88mw+Jy3RKcBFETH6/byIcpGlJgwGzQlRLiJwZteVtHZE7A+8HvjEAOUmn+B2O8Od4DZWXQeSk83LuMx8f0R8jzKfBvC6zPxRq+0bDJoTuiOFvSjXfL6TsiLpkZl59gDlzoxy/ZHjKMNWSRlSWi5FxEImrurXn3QcXaN7/qw8MU0rMy+nGzZtzclnzRlRrkz34cy8ZIw159QJbhGxJRNDSedl5pWz+HQ0SwwGzRlRrp39FMrVA/tnkDdfvry70tkT6R11Z+apreuMU0QcQt0C+SLK6rSDL0yoZYvBoDkjIjac6v7MbHqZ2Yj4DGWp9CuY6AzJzDykZZ1xG7oFUssP5xg0Z7QOgGlsTTkRbK7tVQ3aAqnlh8EgPXzXAI8FbpvtJ9LYoC2QWn44lCQ9RBFxBqVrZ01gS8pJbXePHp8Lq+F2168YtUB+v2ULpJYfBoP0EEXEzkysfHtE/yHgWC+BqbnCoSTpIRqtgBsRK7oaruYyg0F6iFwNV38uHEqSHiJXw9WfC4NBklRpdtlDSdLcYDBIkioGgySpYjBIkir/D9kCqWt2X+wjAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"There are no missing values present in the dataset","metadata":{}},{"cell_type":"markdown","source":"### Checking correlation","metadata":{}},{"cell_type":"code","source":"plt.figure(figsize = (15, 8))\n\nsns.heatmap(data.corr(), annot = True, linewidths = 1)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:42.448228Z","iopub.execute_input":"2021-08-24T17:50:42.448692Z","iopub.status.idle":"2021-08-24T17:50:43.571416Z","shell.execute_reply.started":"2021-08-24T17:50:42.448638Z","shell.execute_reply":"2021-08-24T17:50:43.570496Z"},"trusted":true},"execution_count":9,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAAA40AAAHSCAYAAABIEy4yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1xV5R/A8c+57MsQEGS4AEdOBMW9IBUV9/qlubKlWTZcuUorV0OzstSsNEdqlqk5MRX3FnAPQESmTNnznt8f9wpchlrCvWTP+/XiVZzznMv363nOc85znuecK8myjCAIgiAIgiAIgiCURaHvAARBEARBEARBEISqS3QaBUEQBEEQBEEQhHKJTqMgCIIgCIIgCIJQLtFpFARBEARBEARBEMolOo2CIAiCIAiCIAhCuUSnURAEQRAEQRAEQSiX6DQKgiAIgiAIgiD8C0iS9JMkSfclSbpSznpJkqSvJUkKkSTpkiRJLSvi74pOoyAIgiAIgiAIwr/DWqDXI9b3Bhpofl4HVlTEHxWdRkEQBEEQBEEQhH8BWZaPAkmPKDIAWCernQasJUlyetq/a/i0H1CFyfoOQBAEQRAEQRCEJybpO4B/Ki8hrFL6HkZ2bn/336QmcK/Y75GaZTFPE8ez3GkkLyFM3yFUOCM7N953GaHvMCrcp+GbmFd3pL7DqFDz7m7kVuNHzR74d2p4fR/naw3UdxgVzityO7sdnq1jq0/cJia7DNd3GBVuafhmmjm003cYFe5K3Gm2Ob6o7zAq3ODYXzhXc5C+w6hQraP+4DWXYfoOo8KtDt/KzUa99R1GhXvuxl42Oo/SdxgVamT0Bl6oO1DfYVS4LXe36zsEoRzPdKdREARBEARBEASh0qkK9B3BQ1FA7WK/19IseyrimUZBEARBEARBEIRnw05gjOYtqu2AB7IsP9XUVBAjjYIgCIIgCIIgCE9HVunkz0iStAnwBuwkSYoE5gJGALIsrwT2AH5ACJAJjKuIvys6jYIgCIIgCIIgCP8Csiw/8gUMsizLwJsV/XdFp1EQBEEQBEEQBOFpqHQz0qgvotMoCIIgCIIgCILwFGQdTU/VF/EiHEEQBEEQBEEQBKFcYqRREARBEARBEAThaTzj01PFSKMgCIIgCIIgCIJQLjHSKAiCIAiCIAiC8DSe8WcaRafxKcxZuJSjJ85ia2PN9g0r9R3OY/WfO5bnfDzIy8rl16kriL4aXqpMzWauDPtiAkamxtw8HMTOj34GwKlxHQYteAVjpSnJkfFsfvdbctKzUBgaMPTT13Fu6oKBoQEXth0j4LsdOs2r97wxNPBpQV5WLtunriLmSum8nJq5MHDJBIxMjbh9OJi989YVrmvzki9tRvdApVJx+1AQBxZtwsDIgL4LX8HZ3Q1ZpWLfR+sJP31dh1kVUXZqRY1Zb4BCwYPf9pH8w69a663HDqba0J5QoKIgKYXYOV+SH30fALupr2DetQ1IEpknA4lfuEIfKZRi5e1JnY9eBQMFCZsOEPvtNq31Dq/1x25ED+SCAvITUwmf8g25UfEANNjwIeaez5F+7hohLy3QR/jlsvdpQZP5Y5AMFNzbeJjQb3Zqrbdt14gmn4zBskkdAsd/TeyuswBYNa1Ls89extBCiaxSEbLsD2J2nNZHCuUaNHcsjX08yc3KYdPUFUSV0X70nvoCXoO7oKxmzsymLxUu7/qKH22HP48qv4D0pDS2TF9JclSC7oJ/QjMXTKZzt/ZkZ+Uw++1PuH75Zrllv1n3ObXqOjOo60gdRlg2Bx933D9R17vwjYe5tfxPrfUKY0O8vnkDa3dXcpPTOTv+azLvJSAZGdDy81exbuGKrJK59ME6Ek5ex9DclC47Pizc3sypOvd+P86lD9frOrVCVt6e1Pn4FSSFgvhNf5VuM17vj/2I7sj5BeQnpXJn8vLCNqPhhg8wb/kc6eeuc3ts1WozAIbPHUdzn5bkZuWwZuq3RFy9U6rMwKkjaD+4C8pqFkxqOrpw+f8+GEuj9s0AMDY1xtKuGu+4v6Sr0Muk7NQKh9kTCs9ZSau3aq23eWkQ1Yb2goIC8pMeEDu76JxlP/Vl9TlLoT5n3V+g32srJ293vD4ZjaRQELIpgGtlHFsdvp6AbXNXcpLTOD5hORmR6rbNunFt2nz6MkaWZqCS2ev3IaqcPOoObE+zSf2RZZmsuBROTvqOnKR0faRX6KV5r+Lp04qcrBxWTP2aO1fCtNYbmxrz3orpONRxRKVSceGvc2z6VN0edB/Zk55j/FAVqMjOzOL7md8RdTtSH2non6pA3xFUKjE99SkM9OvByqXz9R3GE3nO2wM7V0c+936PbbNWM2jBK2WWGzT/ZbbNXM3n3u9h5+rIc94tABiy+HX2frqZZb3e5+r+83R9vS8A7n5tMTQ2ZFmv9/m67yzavtgNm1p2OsurgU8LbF0d+brrFP6c+SN95pf9/aV9F7zMnzN+4OuuU7B1daS+Ji+X9k1o1KMVK3rP5Lse73Py+90AtBzxPAAres5g/ajF+M4ZiSRJukmqOIWCGh+8SdTrcwjv9zpWfbwxrldHq0jO9RAihr3N3YFvkOZ/HPup6n1r6tEYM88m3B3wBnf7T8C0eUPMWrvrPoeSFArqzB/PrdEfc9VnErYDOmPaoJZWkcyrYVz3m8K1Hu+SvPsktWaPLVwXu2I7d95ZpuOgn4BCounicZx98VOOdJ6K86AOWDSsqVUkKyqB4HdWEr3thNbygqwcgt5awdGu0zg7fDFNPhmDoZVSl9E/UmNvD+xcnVjo/S5bZ61m6IJXyyx37eAFlg2YXWp51LVwvuw3iy96v8+lvWfoO1P/Ha2SOndrTx3X2vi1G8a8qYv44LPp5Zbt7udNZkamDqN7BIVEi0XjOPHiZxzoMo1agzpgWaLeubzoTW5KBv7tJxOyai/N5qi/4st1lLqdO+gzgxMvLKL53FEgSeRnZHOo+6zCn8zIBKL2nNN5aoUUCuoueJ3boz7his/bVB/YqXSbcSWMa72ncrXHeyTtPkntOWMK18Ws3E5YVWwzgGbentRwdWK29yTWz1rFyAWvlVnu0sHzLBwws9TyXz/5mY/9pvGx3zQO/byXi/vOVHbIj6ZQ4PDhm0S+9gF3+o7HsoxzVvb1UO4OfZvwARNJ338c+6kvA2Dq2Rizlk0IHzCR8H5vqM9ZbZrrIwsAJIVE64VjOTzyM3Z5T8dlQDusGjhrlak3Qn1s7ew4hRur9+E5Z7h6WwMFHb55g7Mz1rDbZwYHhi5AzstHMlDg9fEo/hq2gD3dZ5FyPYKG43z1kV4hD59WOLo68U7XN1g98ztemT+hzHK7vt/O5G5v8b7fZJ7zaoyHd0sATuw4yrSe7/C+33vsXPkHY+a8rMvwBR0Sncan4OXRnGpWlvoO44k09W3FhW3HAIgIDMHMUomlvbVWGUt7a0wszYgIDAHgwrZjNPX1AsDe1Yk7Z9QjbbePX6JZ7zYAyICRmQkKAwVGpsYU5OaTnZalm6SA53q0Ivh3dV6RgSGYWimxqGGtVcaihjUmFmZEavIK/v0YjXxbAdB6VDeOf7eTgtx8ADISUwGwb1CTOyevFS7LTs3A2d1VFylpMXV/jryIGPIiYyEvn9Q9RzB/vr1Wmayzl5CzcwDIDr6BoUNRp10yMUYyMkQyNkIyNKAgMVmn8ZfF3KMBOeEx5EbEIeflk7TjONa+bbXKpJ28gio7F4D0izcxdqpetO7EJVQZuqtjT8q6ZX0y78SSdfc+cl4B0dtP4dDLS6tM1r0E0q5FIKtkreUZYbFk3okFICcumdyEVIyrW+ks9sdp5uvF+W1HAbhbTvvxcF1afEqp5SGnrpGn2Z93A29j7WhbmeH+Iz69urBz6x4ALl24iqWVBXY1qpcqZ6Y0Y8yEEaz6co2uQyyTrWd9Mu7EkRmhrneR20/h1LOVVhmnnl5E/KpuJ6N2ncG+k3pkyrJhTe4fvwpATkIqeakZ2Hi4aW1r4eaIiZ0Viadv6CCbspl7qtuMnGJthk3PNlplircZGRduYVS8zTh+GVV61WszADx8W3N62xEAwgJvo7Q0p1oZx1ZY4G0elHFsFde6fyfO7jzxyDKVzdS9IXkR0YXnrLQ9R7Do1k6rTNaZonNWVvANjBw15yxZLn3OSkjRcQZFqnvWIy08jvSIeFR5BdzdcZraJY6tWj1bErZVc2216ywOnZoC4NS1OSnX75FyLQKA3OR0dbsvSSBJGJqZAGBkYUZWrH7Py617tOHo7wEA3A68hbmVOdY1bLTK5GbncvXUFQAK8vK5cyUUW0f1MZZV7NgyUZoio31++0+RVZXzU0VUmU6jJEnbJUm6IEnSVUmSXtcse0WSpFuSJJ2VJGm1JEnLNcvtJUn6XZKkc5qfjvqNvuqzcrDlQXRi4e8PYpOwKnHhZuVoy4OYpKIyMYlYOajLxN2OpImmA+nu1w5rzQn58p4z5GXlMPvsCmae/Iajq3eR9SCjstPRijm1WF6psUlYOWg3dlYONqTGFuWVGlOUe3VXJ+q0acSr2z/ipS1zcHZXXzDFXbvLcz1aojBQYF3bHudmrlg5l76ArGyGNaqTHxtf+Ht+XAJGDuXHUW1ITzKOnQcgO+g6mWeCcTv6C25HfyHj+AVyw+5VesyPY+xkS25M0dTE3NhEjJ3K70TYj+jOg8MXdRHaUzF1tCGrWF3Mjk7E1NHmEVuUrZpnPRRGhmSGx1VkeE/FysGWlGK5pcQmUe0fdvza/s+H6wFBFRRZxXFwsic26n7h73Ex93Fwsi9VbtKM1/l5xS9kZ+XoMrxymTpp17usmCTMShxPxcvIBSry0jIxtrXkwdUInHq2QjJQoKxjj7W7K2bO2tvWGtieyJ2nKj+RRzB2tCU3ulibEZOIkWP57aDdv6TNALBxsCWp2P5Ljk38RzdVbGvaYVe7BjdOXqnI8P42Qwc78mKKnbNiEzB81DlrqC/pRx+es26QeeYS9Y5tpN6xjWQcv6jXc5aZow2Z0UXXDpkxSZg5abfpSkcbMjRl5AIVeamZmNhaYOnmCLKMzy/T6b1/Pk0m9lGXyS/g7Iw19Dm0mMGBy6nWsCahmwJ0llNZbBxtSSx2fCXGJmLrUH4dVFqZ06p7a66cuFS4zHdMb746upKRM8eydu4PlRqvoD9VptMIvCzLcivAC3hbkqSawAdAO6Aj0KhY2a+AL2VZbg0MAUQNrWRbp6+i/ageTPpzASYWZuTnqUfmareoh6pAxYK2E1nc+R26vNoH29o19Bztk1MYKjCzNueHgXM5sPAXhn03CYDAX4+QGpPE63/Op9eHo7l38TZyQdW521MWy37PY9KsAck//gaAUR0njOvVIcxnFGHeI1G288CsVVM9R/n32A7uitK9PrEr/9B3KDphUsMaj+UTCX53JcjP3t3aVgM7UdvdjcPf//n4wlXQc00bUNulFgf3HtF3KBXi7qYAsqIT8dk/H/ePR5N0/jZygXa9qzWwPZF/6LfT+HdUH9wV8xb1iF2xXd+h6FSbfh25uOc08r/olf9W/XwwbdqQ5B9/BzTnLLfahHqPJrTrKJTtWvzrzlkPKQwNsG/TkJNvfYf/wI+p1csLh05NkQwNaDimO3t8Z7PN8y2Sr0fQdFJ/fYf7xBQGCt7+ZjL71uzm/r2iG5v+6/byTpcJ/LJ4HYMnDdNjhHqmUlXOTxVRlV6E87YkSYM0/18bGA0ckWU5CUCSpK1AQ8367kCTYs+YWUmSZCHLsn6fJK5i2o/uQRvNs3mRwWFUKzZSVs3RVmv0DdSjdNWK3aGu5lSd1Dh1mfjQaH4cswgAO1dHGvl4AOAxoCM3jwSjyi8gIzGV8Au3qOXuRtK9+1SW1mN60Gq4DwBRl8K0RgCtHG1JjdOe6pEal6w1qmrlVJR7akwS1/ep73JGBYchq2SUtpZkJqWx/5MNhdu8sm0uiZrpg7qUfz8RQ8ei0Q5DBzvy4hJLlVO298R2/HAix0xDzssDwKJ7R7KDbyBnZgOQcewcph6NybpwVTfBlyM3Jgljp6IptMaO1cmNSSpVzrKTO06ThnJz6BxkzfThqiw7NhmzYnXR1Lk62X9j2pGhhRmtN07n5qItpFwIqYwQ/5aOo31pp2k/7gWHYl0sN2tHWx7Elt5nj9KgYzO6vzWIb1/4qHA6uL4NHzeEoaMGAHAl6DqONYtueDk41SCu2IgJgIdXc5q2aMT+c39gYGhAdTsb1mz7jnGDJ+o07uKyY7TrnZmTLVkljqeHZbJikpAMFBhZKslNSgPg8tyidq7rn/NID4sp/L1akzpIBgakXCr9YhZdyo1Nwti5WJvhVJ282NLtoFVnd5zeHsqNIVW7zfAe3ZMuI7oDcCc4BNti+8/GsTopf/PYAmjdryO/fKD/++f5cQkYFRuhN3S0I7/Mc5YHthOGc2/09GLnrA7a56yj5zHT4zkrKzYZZbGRd6WTLVkx2m16Zmwy5s62RceWlZKcpHQyY5K4f/pm4Qtuog8FY9vchTzN4zvpd9XXSBE7z9DkrX46yqiI75jedBuufpYy9NJtqhc7vqo7Vicpruw6+PriicTeiWHPT2Xf+Du58xivzh9f8QH/S8hVaCppZagSI42SJHmj7gi2l2W5BRAIPOoBCgXQTpZlD81PTdFhLO3U+gN85TeTr/xmctX/PK0Gdwagjmd9stMySz17lBafQk5aFnU86wPQanBnrvpfAMBc83yVJEk8/9YgTm88CEBKdAL1O6jvBBqZmVDHsz73Q6MrNa9z6w6w0m8WK/1mccP/PC2GqPOq5VmfnLQs0u9r55V+P4Wc9CxqafJqMaQzNw+o87rhfwHX9o0BqO7qiIGRIZlJaRiZGmOkeebArVMzVPkq4m9HVWpeZcm+fBOjus4Y1nQAI0Os/LqScVj7rZomjetRY94kot+cR0HSg8LleTH3MWvdHAwUYGiA0qs5uaH6n56aEXwbU1cnjGvXQDIyxHZAJ1IOnNUqY9bUlbqLJxLy8kLyEx+U80lVy4PAUMzdHDGrY49kZIDzwPbE7b/wRNtKRga0WjuZyK3HCt+oqm8n1vuzxG8GS/xmcNn/PF6DuwBQt5z241FqNnVh2MLX+PHVz0nXPDdcFWxe8ztDu41haLcxHNp7hP7D/ABwb9WU9LR0Eu5rX+xu+Xkbz7foR8/WgxjTfzzhYRF67TACJAeFYuHmiFJT72oNbE+Mv3a9i/G/QJ3/qdvJmn3bEn9CfRFuYGaMgVLdztXo0gw5v4C0W0XtXK1BHYjcflJHmZQvI+g2JiXajGR/7RfzKJu6UnfxG9weV/XbjID1+wtfXhPkf452g7sC4ObZgKy0zMc+u1iSYz1nlNXMCb14qxKi/XuyL9/CqK4zRppzlqVfV9IPlT5nOXz0NlETP9I6Z+XHxGuds8xaNydHj9NTE4PCsHR1xLy2PQojA+oOaEekv/a05yj/i7gN01xb9W1D3HH1uxBiAi5h3bg2BmbGSAYKarRvxINbUWTFJlGtYU1MbNXvw3Ds0pzU25V7zVQW/3V7ed/vPd73e49z/mfoMsQbgAaeDclMyyDlfukbni9MfRGlpTk/f/Sj1nJHF6fC//d83ouY8JiSmwrPiKoy0lgNSJZlOVOSpEaop6SaA10lSbIB0lBPQ72sKe8PTAI+B5AkyUOW5SBdBz1t7mLOBV4iJSWVbgNHMfGV0Qzp11PXYTyRG4cDec7Hg+lHlpGblcPWaasK172zZxFf+anfyvbHB2v438Ov3AgI4qbm2SOP/h1oP1p9V+rK/rOc3xoAwKl1/gz7fAKT/T8HCc5vPULsjQid5XX7UBANfDx4++hS8rJy2TG1KK8Jexay0m8WALvnrGHgkvEYmhoTEhDM7cPBAAT+GsCAz19nov9iCvLy2T5F/XpvczsrRq17H1mWSYtNZtt7evqqigIV8fO/o9YPC0ChIHWbP7khd6k+aTTZV26Tcfg0dtNeRaE0w+lL9Vsr82PiiX5zHun7j6Ns60HdHeqpjpnHL5ARoOc36wEUqIj4YDUNN84FhQGJW/4i+9Y9nKeOICM4hAcHzlF7zksYmJtSb6X6DZa5UfGEvLwQgOd+X4hp/ZoYmJvifu4HwqcuJ/VIkB4TUpMLVFyZuZY2m2ciGSiI3BRA+s1IGk4fSkrwHe7vv0A1DzdarZmMkbU5Dr4taThtGEe7TsO5f3ts2zXCyMaCWi+oO2eX3l5J6tW7es5K7frhQBr7eDDryFfkZeWwaVrRa/Cn7FnMEr8ZAPSd8SItB3TEyMyYD099y5kth9m/7Df6zRyJidKEsd+9C0ByVAI/vfaFPlIp19G/TtK5Wwf2nvmNrKxsPnin6M3Yvx1cx9BuYx6xtf7IBSqCZq2l46YZSAYK7m4KIO1mFI2nDyUlKIwY/4uE/xKA1/KJ+J5aSm5KBmfHfwOAiZ0VHTfNQFbJZMcmc26SdjtXq387Toz8TB9paStQETFnNc/9MhcUChK2HCxsMzKDQ0g5cI5aH4zFwNyU+qumAZATFU/IOPXsmEbbFqjbDKUpLc6v5s6Ub6tEmwFw+fBFmvt4suDIN+Rm5bJ22reF6z7c8zkf+6nzGTJjFG0HdMLYzJjPTq3k2JaD/LlM/VUWrft15Nyf+u/cA1Cg4v4nK6j143xQGPDgd39yQyI056xbZBw+g/20V1AoTXFepj4/58fEEzXxI9L2H0fZrgUuO1eADBnHz5NxWH/nLLlAxfnZP/P8L9ORDBSEbj7Cg1tRuE8bQmLwHaL8LxKy6Qgdvp5A/xNLyElJ58QbywHIfZDJ9VV76bXnY5Blog8FE30wCIDLS7fR4485qPIKyIhK4NS73+stR4DAQxfw9GnFV0dXkqv5yo2HPt3zJe/7vYetY3UGT/ofUSH3WLx7KQD71+3m0Oa/6DnWj+adWlCQV0BGajrfTf5KX6noXxWaSloZJLkKPDcjSZIJsB1wAW4C1sA81NNRpwFJqEceI2VZni1Jkh3wLdAYdcf3qCzLJd8RLOclhPGsMbJz432XEfoOo8J9Gr6JeXWr3mv4n8a8uxu51biXvsOocA2v7+N8rYH6DqPCeUVuZ7fDs3Vs9YnbxGSX4foOo8ItDd9MM4d2jy/4L3Ml7jTbHF/UdxgVbnDsL5yrOejxBf9FWkf9wWsuz96zW6vDt3KzUW99h1Hhnruxl43Oo/QdRoUaGb2BF+oO1HcYFW7L3e16+H6zipFz+2SldKpMGnSoEv8mVWKkUZblHKBUKyVJ0nlZlr+XJMkQ+AN1xxJZlhOAF3QapCAIgiAIgiAIQlnEM416NU+SpCDgCnAHTadREARBEARBEARB0I0qMdJYHlmWp+o7BkEQBEEQBEEQhEdSFeg7gkpVpTuNgiAIgiAIgiAIVZ6YnioIgiAIgiAIgiD8V4mRRkEQBEEQBEEQhKfxjH/lhhhpFARBEARBEARBEMolRhoFQRAEQRAEQRCexjP+TKPoNAqCIAiCIAiCIDwNMT1VEARBEARBEARB+K+SZFnWdwyV5ZlNTBAEQRAEQRCeQZK+A/insoP3VErfw7SFX5X4N3mmp6e+7zJC3yFUuE/DN5GXEKbvMCqckZ0bC+qO1HcYFWr23Y188ozlBPDB3Y2MrjtY32FUuPV3t7G25ih9h1GhXora8MzWwUV1n619BTDz7gb8HYbrO4wK5xu3mW2OL+o7jAo1OPYXPnsG6+D0uxv40/HZu3bqF7uJczUH6TuMCtU66g961+6t7zAq3N57e/UdglCOZ7rTKAiCIAiCIAiCUOnEi3AEQRAEQRAEQRCEcokX4QiCIAiCIAiCIAj/VWKkURAEQRAEQRAE4Wk849NTxUijIAiCIAiCIAiCUC4x0igIgiAIgiAIgvA0VAX6jqBSiU6jIAiCIAiCIAjC0xDTUwVBEARBEARBEIT/KjHSKAiCIAiCIAiC8DTEV24IgiAIgiAIgiAI/1VipLEc/eeO5TkfD/Kycvl16gqir4aXKlOzmSvDvpiAkakxNw8HsfOjnwFwalyHQQtewVhpSnJkPJvf/Zac9CwUhgYM/fR1nJu6YGBowIVtxwj4boeOM3u8OQuXcvTEWWxtrNm+YaW+w3ks33ljqOfTgrysXHZNXUXslfBSZRybudBvyQQMTY0IPRyM/7x1WuvbvuZH9zkjWeoxnqzkdEytlPT9/HWs6zpQkJPHrmnfE38rUkcZqfWcN4b6mrx2PiKvAZq8Qg4Hs1+TV5d3B+M5wofMxDQADn++hZDDwTQb2IH2r/ct3N6hcW1W95lD3LW7OsnpUUbPe4UWPi3Jycrh+6nLuXslTGu9sakxk1ZMo0YdB1QqFYF/nefXTzfoKdoiNb3dafPxaCSFgtubArj87Z9a6xXGhnT+agLVm7uSk5zGkTeWkx6ZULje3Lk6AwM+JWjJNq6u2gPA0NNfkpeejaxSocovYJffhzrN6aHKqIMKQwP6fvoqTs1cURgquPT7cU58t1OXadFj3mjq+XiQl5XDrqnfE1dOXn2WjMfI1JjQw0EcmLdea32b13rTbc5IlnlMICs5vXC5k7sbY/6Yy/ZJy7m551xlp1JKdZ8WNJo/FslAQeTGQ4R/o/1va9OuEc99MhaLJnW4PP5r4nad0VpvYGFGx2NfcH/veW7MWqPL0Etx8HHH/ZMxSAYKwjce5tby0seW1zdvYO3uSm5yOmfHf03mvQQkIwNafv4q1i1ckVUylz5YR8LJ6wBIRgZ4LByHXYfGoJK5ungL0bt1v5+6zRuNm6YO7i2nDjo0c8FvyXgMTY0JOxzEQU0d7DRlKPV7tERWyWQmprJ3yirS76dgW8+J3l+8jkNTF459sZVz3+/RcVZq9j4taKbZbxEbDxOyXLsO2rZrRLOPx2DZpA4XJ3xNzK6zAFg1rUvzT1/GyFKJXKDi9ld/EL3jtD5SKJOVtyd1Pn4FSaEgftNfxH67TWu9w+v9sR/RHTm/gPykVO5MXk5uVDwADTd8gHnL50g/d53bYxfoI/xHmvDRBFo/35qcrByWTF5C6JVQrfUmpibMWjkLp7pOqApUnPnrDGsWq9sHe2d7pnw5BQsrCxQGCtYsWsO5w7o/pqoE8Uzjf89z3h7YuTryufd7bJu1mkELXimz3KD5L7Nt5mo+934PO1dHnvNuAcCQxa+z99PNLOv1Plf3n6er5iLd3a8thsaGLOv1Pl/3nUXbF7thU8tOZ3k9qYF+PVi5dL6+w3gi9XxaYOvqyIquU9gz80d6zR9XZrneC15m94wfWNF1CraujtTT7CsASydbXDs350GxC/kObw0g7loEP/Sayc7JK+gxb3Sl51JcfU1e33adwu6ZP+JXTl5+C15m14wf+LaMvM78uJfVfrNY7TeLkMPBAFzZfrJw2Y73VpB8L75KdBhb+LTEwdWJqV3f5KeZKxk3//Uyy+35fgfvd3ubOX5TaejVCHdvTx1Hqk1SSLRdMJYDoz5ju890XAe2o1oDZ60yDUZ4k/sgg22dpnBt9T5azR6utb71vJFEafZPcfuGLWCn72y9dRgrqw426dMWQ2MjVvWcweo+c2j54vNU02E7WM+nBTaujqzsOoW9M3+k1/yXyizXc8E49s74gZVdp2Dj6oibt3vhurLaDFDXB++ZL3Dn2OXKTKF8ConGi1/m4ouLOdF5Ck6DOmLesKZWkayoRK68s4LYbSfK/Ij6M/5H8ukbuoj20RQSLRaN48SLn3GgyzRqDeqAZYlcXF70JjclA//2kwlZtZdmc0YA4DrqeQAO+szgxAuLaD53FEgSAI3eHUhOwgMOdJzCgS7TSDil+1zdNHVwddcp7J/5Iz3KqYO+C8axb8YPrNbUQVdNHTy7ajdre83iZ7/ZhB4MpMM7gwDITsng4Nz1nFutn84iAAqJ5ovGcebFTzncZSrOgzpgUaoOJhD4zkqi/tCugwVZOQRNWkFA12mcHrGYph+PwdBKqcvoy6dQUHfB69we9QlXfN6m+sBOmDaopVUk80oY13pP5WqP90jafZLac8YUrotZuZ2wd5bpOOgn09qnNc6uzrzS+RW+fv9r3lr4Vpnlfl/1O6/7vM5bvd+iSesmeHl7ATDi7REc23WMt3q/xeI3F/Pmgjd1Gb6gQ6LTWIamvq24sO0YABGBIZhZKrG0t9YqY2lvjYmlGRGBIQBc2HaMpr7qA8je1Yk7Z9R3NW8fv0Sz3m0AkAEjMxMUBgqMTI0pyM0nOy1LN0n9DV4ezalmZanvMJ5Iwx6tuPS7el9FB4ZgaqXEooa1VhmLGtYYW5gRrdlXl34/RkPfVoXre3w4mkOLNiHLcuEy+wY1CT95FYDE0Bisa9ljbmdVydkUKZ5X1CPyMrEwI6pYXs8Vy+txmvZvz7U/T1VYzE+jZY82HP89AIDQwFsorcypVsNGq0xudi7XT10BoCAvn/ArYdg6Vtd1qFrsPOuRFh5HekQ8qrwC7uw4TZ2e2vugjm9LQraq92X47rM4dWpatK5nK9Ij4km5GaXTuJ9EZdVBWZYxUpogPWwH8/LJ0WE72KBHK678fhyA6MBQTKzMMS+Rl7kmr+hA9d32K78fp6GmfQfo/uEoDi/arNVmAHi95MvNvefISEit3CTKUa1lfTLvxJJ19z5yXgGx209So5eXVpnse/GkX4tAVsmltrd0d8XYvhqJAZd0FXK5bD3rk3EnjswIdS6R20/hVOLYcurpRcSvmjq66wz2nZoBYNmwJvePq9vvnIRU8lIzsPFwA6DucG9uPhx9lWVyk9J0lFGR+j1acVVTB2MCQzEtpw4aW5gRo6mDV38/TgNNHcxNLzpejJQmhfUwMzGV2EthqPL099p/G8/6ZNyJLdxv0dtP4dhTuw5m3Usg7XoElKiDGWGxZNyJBSAnLpmchFRMquvuvPso5p4NyAmPISciDjkvn6Qdx7Hp2UarTNrJK6iycwHIuHALI6ei81Pa8cuo0qve9R5AO992HPz9IAA3Am9gYWWBTYnzb052DpdOqduF/Lx8Qi6HYOekvtknyzJKC3XnXmmpJDEuUYfRVzEqVeX8VBFVptMoSZK5JEm7JUkKliTpiiRJL0iS1EqSpCOSJF2QJGm/JElOkiRVkyTppiRJz2m22yRJ0msVGYuVgy0Poosq/YPYJKwcbbXLONryICapqExMIlYO6jJxtyNpomnc3f3aYa1pOC7vOUNeVg6zz65g5slvOLp6F1kPMioy9P8cS0dbUovtq9TYJCwdtBs7Swcb0mKL9lVaTBKWmv3ZsEcr0mKTuH89QmubuGsRPNerNQDOLdyoVtOucBtdeNK8UovllVosL4DWY3x5fd8i+n3+GqZl3K1t0q8dV3ZUjU6jjaMtSdFFozZJsYnYOpT/7620UuLZ3YurJ/Q0ovMwDkcbMqKL9kFGTBJKR5tyy8gFKnJTMzGxscBQaUKzN/sStFR7ihOoT8K+m2bQd+8nNBzpU7lJlKOy6uD1PWfJy8zhvXPf8vaprzj1/W6yddgOWjraaOWV9sR5qcs06NGStNjkUm2GhYMNDXt6cXH9wUqM/tFMHW3JLpZbdnQSJk/abkkSz80bza15+p/yDWDqZENWsVyyYpIwc7Itt4xcoCIvLRNjW0seXI3AqWcrJAMFyjr2WLu7YuZsi5GmDjaZPozn/RfQZvU7mOjwZuBDT1oHS5+3isp0njaMCae+osnADhxf+nvlB/2ESu637JhETJ1sHrFF2aw966EwMiQjPK4iw/vHjB1tyS12jsqNScToETct7UZ058Hhi7oI7alVd6xOQrHcEmISsHMsf/aHuZU5bbu3JehEEAAbvtyAz2Af1p9dz8c/f8yKD1dUdshVl+g06kwvIFqW5RayLDcD9gHfAENlWW4F/AQskGX5AfAWsFaSpOGAjSzLq/UWdRm2Tl9F+1E9mPTnAkwszMjPywegdot6qApULGg7kcWd36HLq32wrV1Dz9H+dxmaGtPhzf4cXfpbqXUnV/yJqZWSV/csxOulnsReDS/zznxVdWHDXyzv8h7f955F+v0UenwwUmu9s0c98rNydf6cZkVQGCiY+M1k/NfsIf5e1big+Cc8pgzm2up95GfmlFq3d9An/NlrDn+N+pxGL3XHoe1zeojw6ZRXB5096qFSqVjW5i2+6fQe7V/zw7q2vZ6jfTIP24xjZbQZ3eeO4vDizSD/e9qJ4mqP8yXhYCA5xW6G/lvd3RRAVnQiPvvn4/7xaJLO30YukJEMDVDWrE7i+Vsc8p1N0vnbNJ878vEfWAUd+3wrK9u/w7XtJ2k5toe+w6lQJjWs8fxmIkHvrvxXHk/VB3fFvEU9Ylds13coFU5hoOD95e+zc81OYiPUo8LeA7z5a+tfjG4zmg/Hfsi0ZdOQNNPBhWdLVXoRzmVgiSRJnwK7gGSgGXBAU/kMgBgAWZYPSJI0DPgWaFH2x/097Uf3oM0I9XMQkcFhVHMuuoNUzdFW664zqO+6Vyt217OaU3VS49Rl4kOj+XHMIgDsXB1p5OMBgMeAjtw8Eowqv4CMxFTCL9yilrsbSffuV0QK/xmtxvTAc7h69CX6UhhWxfaVlaMtaXHJWuXT4pK1Rj8snWxJi03Cpq4D1rXteXWvel9ZOdnyyu4FrBnwIRnxD9g17fvCbd48vozkiMrdT17/IK/iI+BWmrwArelxFzcdZvhPU7W2bdqvPVd2nqzwHP6O7mN64T1cfbETdikEW+eiO5u2jtVJiiv74vXlxW8QdyeG/T/t0kmcj5IZm4y5c9E+MHeyJTM2ucwymTFJSAYKjK2U5CSnY+9ZH5c+bfCaPRxjKyWySqYgJ48baw8UfkZ2YioRey9g51GPuDM3Kz0fXdTBZgM6EBpwCVV+AZmJqdy7cAtndzdS7sVXWl4tx3THQ5NXTIm8LJ84r2Rs6tagWm17Xt67sHD5uN3z+XnAXJzcXRnwjfpZIKWtJfV8WqDKV3Hb/0Kl5VVSdmwSpsVyM3W2JSf2yTqB1l4NsG7biNov+WJgboLC2JCCzGxuz99UWeE+UnZMMmbFcjFzsiWrRIf2YZkszbFlZKksnG56eW7RiGnXP+eRHhZDblIa+ZnZhS++ifrzNC4veld+MoDnmO64a+pgrKYOPpyUXl4dLH3e0i4DcG37SYauncqJL0vPWNCHkvvN1Kk62TGl4y6PoYUZbTdM58biLaRcDKmMEP+R3NgkjIudo4ydqpMXW3oaplVnd5zeHsqNIXOQc/N1GeLf0ndsX3qN6AXAreBb2BXLzc7JjoTYhDK3e+fTd4i+E832H7cXLuv5Qk/mjJ4DwI2LNzAyMcLK1ooHiQ8qL4EqSpb1NzVcF6pMp1GW5VuSJLUE/ID5wCHgqizL7UuWlSRJATQGMgEb4KmHS06tP8Cp9QcAaOTjSYexvgTvPEkdz/pkp2WSFp+iVT4tPoWctCzqeNYnIjCEVoM7c2LtfgDMq1uRkZiKJEk8/9YgTm9UT1dKiU6gfoemBP5xHCMzE+p41uf4T3ufNvT/nAvrDnBhnXpf1X/eA6+xvlzbeQpnz/rkpGWRfj9Fq3z6/RRy07Nw9qxPdGAI7kM6c27tfuJv3mNZq4mF5d48voyf+s0hKzkdEysleVk5qPIK8BjuQ8TZG1rPkVSG8+sOcL5YXq3H+nJ15ylqetYnu5y8ctKzqOlZn6hieYH6WbOH5Rv19CL+ZrFDRJJo0rctPw/9uFLzeZy/1u3jr3X7AGjxfCt6jO3N6Z3HqefZkMy0TB7cL32hMXTqCJSWSn6c/p2uwy1TQlAYVq6OWNS2JzM2CdcB7Tj6pnZs9/wvUn9YZ+IvhODSpw0xJ64BsHfwJ4VlPCYPJi8jmxtrD2BoZgIKifyMbAzNTHDu2ozgL7frJB9d1MHUqARcOjThsqYdrOnZgDM/7qvUvC6u+4uL6/4CoN7zHrQa20PTZtQjJy2TjBJ5ZWjycvasR3RgKM2GdOLCWn/ib0bydauilzy8cfxL1vb7gKzkdFZ0mly4vM8XrxNyKFCnHUaA1MBQlG6OmNWxJzsmCceBHbj0xjdPtO3licsL/9/5ha5YtXDTW4cRIDkoFAs3R5R17MmKSaLWwPacKxYjQIz/Ber8rzNJF25Ts29b4k+on2M0MDMGSaIgM4caXZoh5xeQditKs00g9h0aE3/iGvadm5F6SzfPEweu+4tATR10e96DlmN7cH3nKZweUQdz07Nw8qxHTGAoTYd04uJafwBsXBxI1kzbbODbkqTQGJ3k8CRSgkIxL1YHnQe252KJ/VYeycgArzWTubf1WOEbVauKjKDbmLg6YVy7BnmxSdgO6ETom19qlVE2daXu4je4Nepj8qt4h2nXz7vY9bP6xmvr51vT76V+HNlxhEaejchIyyC5jPPvmGljUFoqWTZtmdby+9H38ejkwV9b/6J2/doYmxr/JzuM/wVVptMoSZIzkCTL8gZJklKAiYC9JEntZVk+JUmSEdBQluWrwHvAdWAWsEZTJq+iYrlxOJDnfDyYfmQZuVk5bJ22qnDdO3sW8ZXfTAD++GAN/3v4lRsBQdwMCALAo38H2o/2BeDK/rOc3xoAwKl1/gz7fAKT/T8HCc5vPULsDe3nYqqCaXMXcy7wEikpqXQbOIqJr4xmSL+e+g6rTCGHgqjn48HEo0sLv3LjoVf3LOQHv1kA7Juzhr4PX58fEExoGW+rLM6uvjP9lkwAWSb+dhS7i4066kLIoSDq+3jw5tGl5Gu+7uCh1/YsZLUmr71z1tBf80r20IDgwjdUdps5AscmdZFlmQeR8eye9VPh9nXbNiI1OqlSR3b+ruBDF/DwackXR78jNyuH1VOLLjLm71nCHL8p2DhWZ8CkYUSFRPLJ7i8AOLBuL0c2/6WvsJELVJye8zM9fpmOpFAQsuUIKbei8Jg6hMTgO9w7cJHbm4/Q+esJDD6+hJyUdI485gLK1N6K5398FwDJwIA7208SpYcXk1RWHTy37gD9vxjPhAOfgiQRvPUI92/c01leoYeCqOfTgglHl5CXlcvuqUXH9st7FvCT32wA9s9ZS98lr6u/7uAJ2oyqQC5QcWPmGlpunoVkoCBq02EybkZSb/owUoPDiN9/ASsPNzzWTMHI2hx735bUmzaUk12n6Tv0UuQCFUGz1tJx0wwkAwV3NwWQdjOKxtOHkhIURoz/RcJ/CcBr+UR8Ty0lNyWDs+PVHWQTOys6bpqBrJLJjk3m3KSiZ6yuzN9E62/ewP2TMeQkpnLh3VXlhVBpwg4F4ebTgteOLiE/K5e9xerg2D0L+FlTBw/MWUtvTR28ExBMmKYOdpnxArZuTsgqmdSoBPw1X41ibl+NMX9+grGFGbJKhdfLvfix+/uVfsOzOLlAxZVZa2m3aSaSgYJ7mwJIvxnJc9OHkhJ0hzj/C1TzcKP1T5MxsjbHoUdLnps2jICu03Du357q7RphbGNB7Re6ABD0zkpSr+r/Dd8UqIiYs5rnfpkLCgUJWw6SfesezlNHkBkcQsqBc9T6YCwG5qbUX6U+nnKi4gkZp57J1GjbAkzr18RAaUqL86u5M+VbUo8E6TGhIucOnaP186356fhPZGdl8+WUos7w8n3LeavXW9g52jHi7RFE3I7gm73q4+zPtX+yf/N+fvjkB97+9G0GvToIWZZZOnmpvlLRvyr0/GFlkEq+/U1fJEnqCXwOqIA84A0gH/gaqIa6g7sMOApsB9rIspwmSdJSIE2W5bklPlJ+32WEboLXoU/DN5GXEPb4gv8yRnZuLKj773y2pDyz727kk2csJ4AP7m5kdN3B+g6jwq2/u421NUfpO4wK9VLUhme2Di6q+2ztK4CZdzfg7zD88QX/ZXzjNrPN8UV9h1GhBsf+wmfPYB2cfncDfzo+e9dO/WI3ca7mIH2HUaFaR/1B79q99R1Ghdt7b++/9oHIrMM/VEqnyszn1Srxb1JlRhplWd4P7C9jVZcyljUutt3kMtYLgiAIgiAIgiA8cyRJ6gV8hfqdLz/Isry4xPo6wM+AtabMDFmWn+pLXKtMp1EQBEEQBEEQBOFfSUfTUyVJMkD9MtAeqN/rck6SpJ2yLF8rVmwO8KssyyskSWoC7AFcnubvVqWv3BAEQRAEQRAEQRDK1wYIkWU5TJblXGAzMKBEGRl4+EW01YDop/2jYqRREARBEARBEAThacg6exFOTaD4G+QigbYlyswD/CVJmgSYA92f9o+KkUZBEARBEARBEISnoVJVzs8/MwJYK8tyLdRfZ7he85WF/5joNAqCIAiCIAiCIPw7RAG1i/1eS7OsuFeAXwFkWT4FmAJ2T/NHRadREARBEARBEAThaciqyvkp7RzQQJIkV0mSjIHhwM4SZSKAbgCSJDVG3Wl8qi/oFp1GQRAEQRAEQRCEfwFZlvOBt1B/VeF11G9JvSpJ0seSJPXXFJsCvCZJUjCwCXhJluWn+h5J8SIcQRAEQRAEQRCEp6Gjr9wA0Hzn4p4Syz4s9v/XgI4V+TfFSKMgCIIgCIIgCIJQLjHSKAiCIAiCIAiC8DR0ONKoD9JTTm+typ7ZxARBEARBEAThGSTpO4B/KmvX0krpe5j1nVwl/k2e6ZHGeXVH6juECjfv7kYWPIN5zb67kbyEMH2HUaGM7NxYW3OUvsOocC9FbeBDl2evDn4cvpFtji/qO4wKNTj2F9Y8g3VwXNQGQpv11HcYFa7elf00c2in7zAq3JW400x0+Z++w6hQ34X/ym6HEfoOo8L1idvEyy5D9R1Ghfsp/DfGuwzTdxgValX4VpKHees7jApnszVA3yEI5XimO42CIAiCIAiCIAiV7hmfnipehCMIgiAIgiAIgiCUS4w0CoIgCIIgCIIgPA352R5pFJ1GQRAEQRAEQRCEpyGmpwqCIAiCIAiCIAj/VWKkURAEQRAEQRAE4Wk849NTxUijIAiCIAiCIAiCUC4x0igIgiAIgiAIgvA0nvFnGkWnURAEQRAEQRAE4WmITuN/U+95Y2jg04K8rFy2T11FzJXwUmWcmrkwcMkEjEyNuH04mL3z1hWua/OSL21G90ClUnH7UBAHFm3CwMiAvgtfwdndDVmlYt9H6wk/fV1nOfnOG0M9TU67pq4itoycHJu50G/JBAxNjQg9HIx/sZwA2r7mR/c5I1nqMZ6s5HRMrZT0/fx1rOs6UJCTx65p3xN/K1JHGT25OQuXcvTEWWxtrNm+YaW+w3msmt7utPl4NJJCwe1NAVz+9k+t9QpjQzp/NYHqzV3JSU7jyBvLSY9MKFxv7lydgQGfErRkG1dX7QGgyWu9aDDCG2SZ5BuRnJj8PQU5ebpMC7+5RcfVH1NXEXM1vFQZp2YuDP5CXQdvHw5mz0fqOjhs+STs3JwAMLVSkp2ayQq/WbgP6EDH8X0Lt3doVJuVfecQe+2uTnJy8HHH/ZMxSAYKwjce5tby0vvK65s3sHZ3JTc5nbPjvybzXgKSkQEtP38V6xauyCqZSx+sI+GkdnvQ/ucpKOvW4KD3+zrJpbia3u601dTBW+XUwS7F6mBAGXVwkKYOXtHUQQBJIdFv7ydkxibz19glOsvnccw6emE3YwKSgQGpv+8l5cdftdZb/a8PVsP7gUqFKjOL+HlfkRcWoadoH23mgsl07tae7KwcZr/9Cdcv3yxVZuWmL7F3sMPAwICLZ4KYP+MLVCoVzzWpzwefv4/S3Izoe7G8/8aHZKRn6iGL0obNHUdTH0/ysnJYN/U77l29U6pM/6nDaTu4C2bVLJjcdEzh8nZDuzJo5mhS4pIAOPLzPk5uOaSz2Mtj79OCJvPV7ce9jYcJ/Wan1nrbdo1o8skYLJvUIXD818TuOguAVdO6NPvsZQwtlMgqFSHL/iBmx2l9pFCmF+e+THMfT3Kzcvlx6nIiythXg6eOoMPgriirmTOx6ejC5bbOdryy5C2UVuYoFAp++3QDlwMCdRl+uV6YO45mPi3Jzcph7dRvy6yDA6aOoN3gLiirWfBOsbwAWvVpT993/weyTOT1u/z4zle6Cr1chh5tUI57CxQG5BzcTc72X8osZ9S2CxZTPyb1/fEUhN3EoH4jlOOnFq7P3rqWvLPHdRW2oAfimcYyNPBpga2rI193ncKfM3+kz/xxZZbru+Bl/pzxA193nYKtqyP1vVsA4NK+CY16tGJF75l81+N9Tn6/G4CWI54HYEXPGawftRjfOSORJEknOdXT5LSi6xT2zPyRXuXk1HvBy+ye8QMrNDnV0+QEYOlki2vn5jwodmHY4a0BxF2L4IdeM9k5eQU95o0u62P1bqBfD1Yuna/vMJ6IpJBou2AsB0Z9xnaf6bgObEe1Bs5aZRqM8Cb3QQbbOk3h2up9tJo9XGt963kjiTocXPi70tGGxi/7ssvvA3Z0m4lkoMB1QDud5FMYs3cLqrs68pX3FHbO+pF+C8qug/3mv8yOmT/wlfcUqrs60kBTB7e+9Q0r/Gaxwm8W1/ae4/q+cwBc2nGycPnv760g5V68zjqMKCRaLBrHiRc/40CXadQa1AHLhjW1iri86E1uSgb+7ScTsmovzeaMAMB1lLo9OOgzgxMvLKL53FFQrD1w9mtNfka2bvIoQVJItFswFv9Rn/GHz3TcyqiDDUd4k/Mgg987TeHq6n14laiDbeaNJLJYHXyoyau9SLkdXanx/20KBfZz3iTmjTlE9H8NCz8fjNzqaBVJ232YyMETiBw6kZSftmI3fbyegn20zt3aU8e1Nn7thjFv6iI++Gx6meWmvDabIc+PZmDXF7GpbkPP/ur6+NHSWSyb/x2DvUdxcE8A494cpcvwy9XU25Maro7M836bjbO+Z/iCV8ssd+ngBT4dMKvMdRd2nWSR33QW+U2vEh1GFBJNF4/j7IufcqTzVJwHdcCiRPuRFZVA8Dsrid52Qmt5QVYOQW+t4GjXaZwdvpgmn4zB0Eqpy+jL1dzbEwdXJ2Z6T+LnWSsZs+D1MssFHTzPJwNmlFre760hnNt9ko/6TGPVpC8ZPf+1yg75iTTz9qSGqxMfeE9iw6xVjFxQdlyXDp5n0YCZpZbXcHGk18RBfD5kDh/5TubXj9dUdsiPp1CgfOUd0he8T+p7YzHu+DyKWnVLlzM1w8RvCPm3rhUuKoi4Q9r740mb9irpC6ajfH0KKAx0GHwVJMuV81NFiE5jGZ7r0Yrg348BEBkYgqmVEosa1lplLGpYY2JhRmRgCADBvx+jkW8rAFqP6sbx73ZSkJsPQEZiKgD2DWpy5+S1wmXZqRk4u7vqIiUa9mjFJU1O0Y/IydjCjGhNTpd+P0ZDTU4APT4czaFFm5CLVWD7BjUJP3kVgMTQGKxr2WNuZ1XJ2fx9Xh7NqWZlqe8wnoidZz3SwuNIj4hHlVfAnR2nqdOzlVaZOr4tCdmq3p/hu8/i1Klp0bqerUiPiCflZpTWNgpDAwxMjZEMFBiaGZMZm1z5yRTTyLcVQduKHVeWSizsrbXKWNhbY2JZdFwFbSs6ropr1qctl3aeLLXcvX97Lv95quKDL4etZ30y7sSRGXEfOa+AyO2ncCqxr5x6ehHxqzrvqF1nsO/UDADLhjW5f1x97OQkpJKXmoGNhxsABkoT6o/348ay7TrLpbiSdTDsH9TBtDLqoNLJllrdPLi9KaDSc/g7TJo/R15ENPmRsZCfT/reAMyfb69VRs4oGm1TmJlWqRN5cT69urBzq3pk99KFq1haWWBXo3qpcg9HDw0NDTAyNipMp269Opw/pR7VOXXkLD36+Ogm8Mdw9/XizLajAIQH3kZpaY5Vifbj4brU+BTdBvcPWbesT+adWLLuqtuP6O2ncOjlpVUm614CadcikFXa9S0jLJbMO7EA5MQlk5uQinH1qnHu9fRtzcltAQCEBd5GaamkWhn7KizwNg/K2FcyMmYW6g6wmZWSlDjdnqvK08K3Nae3HQHgTuBtzMqpg3fKqYOdhncnYN0+MlMzAEjTXBvqk0H9Rqhio1Ddj4H8fPJOHMLYq2OpcmbDXyF7xybkvNyihbk5oCoAQDI2rrJtolBx/hWdRkmSxkiSdEmSpGBJktZLkrRWkqSVkiSdlyTpliRJfR//KU/OytGW1OjEwt9TY5OwcrDRLuNgQ2psUlGZmCSsHG0BqO7qRJ02jXh1+0e8tGUOzu7qC8G4a3d5rkdLFAYKrGvb49zMFSvn0ifzymBZRk6WJXKydLAhrVhOaTFJWGpyatijFWmxSdy/rj0dK+5aBM/1ag2Acws3qtW0K9xG+GeUjjZkRBfth4yYJJSONuWWkQtU5KZmYmJjgaHShGZv9iVo6Tat8pmxyVxZuYdhZ7/ihcDl5KZmEn30SuUnU4yVgy0PSh5XJfKycrQhNabEceWgXZ/qtmlEesIDksLjSv2NZn3bcXmn7jqNpk42ZBXLKSsmCTMn23LLyAUq8tIyMba15MHVCJx6tkIyUKCsY4+1uytmzuptm7w/jJCVuynIytFZLsWVrIOZMUmY/4062LyMOgjQ9qNRnJ+/qdQFsL4Z1qhOfmx84e/5cQkY1rArVc5qeD/q7F1D9SmvkrDoO12G+MQcnOyJjbpf+HtczH0cnOzLLLtq8zKOXN1LRnoG/n+qR95Cb4bxfO8uAPj264ZjzRqVH/QTsHawJTm6aJZLcmwi1n/zXOPZuy2z937Oq99NxsZJN+feRzF11G4/sqMTMS1xnD2Jap71UBgZkllGm6gPNg7VSSqWV1JsEjaOT/7vvePLX2k/sDNfnFrFu2tmsXHuj5UR5t9m7WCrlVdKbCI2f6MOOrg54eDqzLTfPuH9PxbQtKtHJUT59yhs7VElFrV9qqR4pOra7YWBawMU1e3Jv1h6+rNB/cZYLV2D1ZI1ZK5eWtiJ/M9SqSrnp4qo8p1GSZKaAnOA52VZbgG8o1nlArQB+gArJUky1U+EpSkMFZhZm/PDwLkcWPgLw76bBEDgr0dIjUni9T/n0+vD0dy7eBu5oOpUhvIYmhrT4c3+HF36W6l1J1f8iamVklf3LMTrpZ7EXg2vcheE/yUeUwZzbfU+8jO1OxvG1ZTU6dmS39q9x5aWkzBSmuA2uPTdxH+D5v3bl9kxrOVRj7ysXO5XwWdqy3J3UwBZ0Yn47J+P+8ejSTp/G7lAplrTuli4OBC997y+Q/xHPKcM5moZdbBWdw+yElJJvByun8AqQOrmP4noPY7EpT9iM/5FfYfz1MYPfxcf974YGxvTtpN6hOuDdxcw/KUhbPFfi7mFkjzNjJl/u8t/XeCDTm+yoPc0bhy/xJglb+o7pAphUsMaj+UTCX535TMz0tO2fydO/BbA1PbjWTZuIa99OUlnj/JUJoWBATVcnVgyfB4/TPqKUYvGY1ZFphSXS5IwG/smWetWlLm6IOQ6qZPHkTpjPKaDRoKRsY4DFHTp3/AinOeBrbIsJwDIspykaTx+lWVZBdyWJCkMaAQE/dM/0npMD1oNV0/DiboUpjUCaOVoS2qJ6RGpccmFI4sAVk62hSOPqTFJXN+nvuCLCg5DVskobS3JTEpj/ycbCrd5ZdtcEjXTSypDqzE98NTkFF1GTmklckqLS9YaJbR0siUtNgmbug5Y17bn1b2L1Ns62fLK7gWsGfAhGfEP2DXt+8Jt3jy+jOSI+wj/XGZsMubORfvB3Mm21FTSh2UyY5KQDBQYWynJSU7H3rM+Ln3a4DV7OMZWSmSVTEFOHlkJD0iLiCcnKQ2Au3vPU8OrAWElnpOpaG1G96DVCM1xFRxGtZLHVYm8UmOTsXIqcVzFFY14KQwUNOnZmpX95pT6W836tedyGVNWK1N2TDJmxXIyc7Ilq9hIafEyWZp9ZWSpJFezHy7PLWoPuv45j/SwGOzaN8a6hRs9z32FwkCBiV01Om+bw7HBunsmt2QdVDrZkvGEddDOsz51i9VBNHVQ6WhDHd+W1Hq+BQYmRhhbmtHl6zc4+nbZFyO6lH8/EUPHorvrhg525N9PKLd8+t4A7D6YpIvQnsjwcUMYOmoAAFeCrmuNDjo41SAuJr68TcnNyeXwvqP49OrMqaNnuRNyl9dfUN+bretWmy49OlRu8I/QZXRPOo7oBsDd4FBsnO0A9Ut9bByrkxKb9IittWWkpBf+/4nNBxk0Q//PambHarcfps7Vyf4bjw0YWpjReuN0bi7aQsqFkMoI8Yk9P7oXXTT76k5wKLbF8rJ1tCU5NrG8TUvp/EI3lo5Vt3ehF29hZGKMha2lXqZzeo/uSacR3QEIDw7B1rk6oZp11o7VSf4bdTA5NpHwoNuo8gtIjLzP/Tsx1HBx4u6l0MdvXElUSfEoio0sKmztkYuNPGKmxKC2KxbzlqnXW9ti8f4C0j+dTUFY0Qu2VFERyNlZGNR21Vr+n1OFRgUrw7+h01iekrfUnuoW27l1Bzi37gAADZ73oM1YX67sPEUtz/rkpGWRfj9Fq3z6/RRy0rOo5VmfyMAQWgzpzNm1+wG44X8B1/aNCT91jequjhgYGZKZlIaRqTFIEnlZObh1aoYqX0X87aiSoVSYC+sOcEGTU/3nPfAa68u1nadwfkROuelZOHvWJzowBPchnTm3dj/xN++xrNXEwnJvHl/GT/3mkJWcjomVkrysHFR5BXgM9yHi7A1y07MqLaf/goSgMKxcHbGobU9mbBKuA9px9E3tqXD3/C9Sf1hn4i+E4NKnDTEn1M/K7h38SWEZj8mDycvI5sbaA9h51sO+ZX0MTI0pyM7FqVNTEoLDKj2Xs+sPcHa9ug429PGg7VhfLmuOq+y0LNJLPPeRHp9CTlrRceUxuDOnNccVgFunZiSERWtNDQeQJIlmfdry47CPKz2n4pKDQrFwc0RZx56smCRqDWzPuYnLtcrE+F+gzv86k3ThNjX7tiX+hPo5RgMzdXtQkJlDjS7NkPMLSLsVRdqtKO78/BcAytp2tF8/TacdRihdB90GtONIiToY8YR1MD8jm+tr1XXgwmL1G0kd2zem2QS/KtFhBMi5chOjOjUxrOlAflwiFr29iZu+WKuMUR1n8iLUL/BRdmlDXkTltd1/1+Y1v7N5ze8AdOnegREvD2PvHwdwb9WU9LR0Eu5rX7CbKc0wt1CScD8RAwMDuvToyIXTQQDY2tmQlJCMJEmMf28cv/78h67TKXR0/X6Orlcf/818POk6thfnd57AxbMBWWmZf+vZRSt768Ly7j28iA3V/4yEB4GhmLs5YlbHnuyYJJwHtifwjeWP3xCQjAxotXYykVuPFb5RVZ8Ord/HofX7AHD3aUm3sb05s/MEbp4NyEzLLPPZxfIkRSfQpGNzTvwWgFO9mhiZGOnt+b+A9fsJKKyDLfEZ24tzO0/g+g/qYLD/OVr378jJrQGY21hSw9WJhAj9TikuCLmJwqkWihqOqJISMOr4PBlfFTvfZGbw4JUBhb9azFtG1roVFITdVG+TEA+qAhR2Dhg410EVX3kDIf8Ksug06tsh4A9JkpbKspwoSdLD29/DJEn6GXAF3Hh4+7EC3D4URAMfD94+upS8rFx2TF1VuG7CnoWs9FO/mW33nDUMXDIeQ1NjQgKCua15U2DgrwEM+Px1JvovpiAvn+1T1F/xYG5nxah17yPLMmmxyWx7T3cXTCGHgqjn48FETU67iuX06p6F/KDJad+cNfRdMh4jU2NCA4IJLePth8XZ1Xem35IJIMvE345id7FRx6pk2tzFnAu8REpKKt0GjmLiK6MZ0q+nvsMqk1yg4vScn+nxy3QkhYKQLUdIuRWFx9QhJAbf4d6Bi9zefITOX09g8PEl5KSkc2Tioy80EgJDubv7LP33z0eVX0DS1bvc2nhYRxmp3TqsPq7ePaKug39MK6qDb+xZyApNHdz1wRoGfaGug7cDgrkdUFQHm/drz6UypqbWbduIBzFJJN8rf0SlMsgFKoJmraXjphlIBgrubgog7WYUjacPJSUojBj/i4T/EoDX8on4nlpKbkoGZ8d/A4CJnRUdN81AVslkxyZzblLV6EBBUR301dTB25o66Dl1CAkl6uAQTR0MeEwdrNIKVCQs/BanVQuRDBSk/uFPXuhdbN4cQ87VW2QGnMbqxf4o27VEzs9HlZrO/Vlf6DvqMh396ySdu3Vg75nfyMrK5oN3ii4Afzu4jqHdxqA0N2P5us8xNjFGUkicPXGxsHPoN6gHw8cNBeCvPQH8sWmXXvIo6crhQJr6tOSjI1+Tm5XL+mlFNzFm7vmMRX7qt8QOmjESrwGdMDYzZsGpFZzccojdy7biM643zbt7oSooIDMlnXVT9f9Mqlyg4srMtbTZrH6jdeSmANJvRtJw+lBSgu9wf/8Fqnm40WrNZIyszXHwbUnDacM42nUazv3bY9uuEUY2FtR6Qf0M6qW3V5J6VUdvjn6ES4cv4u7TksVHlpOblcNPxfbVvD2fM89vGgDDZoyi7YDOGJuZ8MWpVRzbcpAdy35ly/yfGbt4Ar6v9EWWZX6c+q2+UtFy5fBFmvt4Mv/IN+Rm5fLztKK45uz5nPmavAbPGEUbTR1cfGolx7ccZNeyrVw9EkSTzi2Ye+BL5AIVvy9arzUCrheqAjJ//AqL2Z+DQkHu4b2oIsMxfWEcBaE3yTtf/uwdw0bNMR34InJBAahUZP6wDDntgQ6DF3RNkv8Fc+AlSRoLTAMKgIdf1pMNeAFWwGRZlkue2eR5dUfqLkgdmXd3Iwuewbxm391IXkLlj3zpkpGdG2tr6n8KVEV7KWoDH7o8e3Xw4/CNbHP89z+nVtzg2F9Y8wzWwXFRGwhtVjVv+jyNelf208xBt1+FowtX4k4z0eV/+g6jQn0X/iu7HUboO4wK1yduEy+7DNV3GBXup/DfGO8yTN9hVKhV4VtJHuat7zAqnM3WgH/tA6xZ62ZWSqfKbMyiKvFv8m8YaUSW5Z+Bnx/+LknSWuAvWZYn6C0oQRAEQRAEQRCE/4B/RadREARBEARBEAShyvoXzN58Gv/KTqMsyy/pOwZBEARBEARBEATgmX97apX/nkZBEARBEARBEARBf/6VI42CIAiCIAiCIAhVhhhpFARBEARBEARBEP6rxEijIAiCIAiCIAjC05Cf7ZFG0WkUBEEQBEEQBEF4CrLq2X57qpieKgiCIAiCIAiCIJRLjDQKgiAIgiAIgiA8DfEiHEEQBEEQBEEQBOG/SpLlZ3b+7TObmCAIgiAIgiA8gyR9B/BPZa6YVCl9D+Ub31SJf5Nnenrqrca99B1ChWt4fR+f1B2p7zAq3Ad3N7K25ih9h1GhXoraQF5CmL7DqHBGdm7sdhih7zAqXJ+4TRxzHKrvMCpU59jfmOry7O2rL8I3sajus9VeAMy8u4GNzs9eXiOjN3DaebC+w6hQ7aK3MdlluL7DqHBLwzez3fFFfYdR4QbG/sKGZ+zYGhW9gbdcXtB3GBVuefgWfYcglOOZ7jQKgiAIgiAIgiBUumf87ami0ygIgiAIgiAIgvA0xItwBEEQBEEQBEEQhP8qMdIoCIIgCIIgCILwNMRIoyAIgiAIgiAIgvBfJUYaBUEQBEEQBEEQnsaz+zWGgOg0CoIgCIIgCIIgPB0xPVUQBEEQBEEQBEH4rxIjjYIgCIIgCIIgCE9DfE/jf5uyUytqzHoDFAoe/LaP5B9+1VpvPXYw1Yb2hAIVBUkpxM75kvzo+wDYTX0F865tQJLIPBlI/MIV+kihUM95Y6jv04K8rFx2Tl1F7JXwUmUcm7kwYMkEDE2NCDkczP556wDo8u5gPEf4kJmYBsDhz7cQcjiYZgM70P71voXbOzSuzeo+c4i7dlcnOdX0dqfNx6ORFApubwrg8rd/aq1XGBvS+asJVG/uSk5yGkfeWE56ZELhenPn6gwM+JSgJdu4umoPAE1e60WDEd4gyyTfiOTE5O8pyMnTST5/15yFSzl64iy2NtZs37BS3+E8MXufFjSZPwbJQMG9jYcJ/Wan1nrbdo1o8skYLJvUIXD818TuOguAVdO6NPvsZQwtlMgqFSHL/iBmx2l9pFAmGx8P3D4Zh2SgIHbjQSKXb9dab9WuMfU+Hod5k7rcmPAlCbuKYnf5YBS23VshSRLJRy8RNucnHUf/aAPmjqWxjwe5WblsmbqCqKvhpcr0mvo/vAZ3wayaObObjitc7tamEf0/HINTozpsnPQ1l/ae1WHk2nrMG009Hw/ysnLYNfV74sppB/ssGY+RqTGhh4M4MG+91vo2r/Wm25yRLPOYQFZyOm3H96HpgA4AKAwVVK9fk6883yD7QYYuUsLJ2x2vT9TtYMimAK4tL90Odvh6AraadvD4hOVkaNpB68a1afPpyxhZmoFKZq/fh6hy8qg7sD3NJvVHlmWy4lI4Oek7cpLSdZJPWap5e+LyyctICgX3N/1F9PI/tNZbtm2Cy8cvo2xcl9tvLCVp96nCdXVmj8a6WysAopZtJXHnCZ3G/jiD5o6lsY8nuVk5bCrn2Oo99QW8BndBWc2cmU1fKlze9RU/2g5/HlV+AelJaWyZvpLkqIRS2+tLDR93mn+ibuvvbjzM7RJ1s3q7RjT/eDRWTepwfsI3RO/SX9tQFidvd1oXO7aulnNsPbzGOFbi2GqrObZkzbElKSS6rHobC5cayAUqIg8EErRwiz5S0zJ07ks01dTB9VNXEHn1Tqky/aa+QJvBXVBWs2BK07Gl1nv0asOrK6fwWb+ZRFwO00XYgo5VyvRUSZKsJUma+CTrJEnyliRpV2XE8dQUCmp88CZRr88hvN/rWPXxxrheHa0iOddDiBj2NncHvkGa/3Hsp74CgKlHY8w8m3B3wBvc7T8B0+YNMWvtro8sAKjv0wJbV0e+7TqF3TN/xG/+uDLL+S14mV0zfuDbrlOwdXWknneLwnVnftzLar9ZrPabRcjhYACubD9ZuGzHeytIvhevsw6jpJBou2AsB0Z9xnaf6bgObEe1Bs5aZRqM8Cb3QQbbOk3h2up9tJo9XGt963kjidLkAqB0tKHxy77s8vuAHd1mIhkocB3QTif5/BMD/Xqwcul8fYfx9ygkmi4ex9kXP+VI56k4D+qARcOaWkWyohIIfmcl0du0L+4KsnIIemsFR7tO4+zwxTT5ZAyGVkpdRl8+hYJ6i17l6osLuNDlPewHdULZsJZWkZyoBG6+8y33/ziutdzS6zmsWjfios8ULnhPxtKjHtU6NNVl9I/UyNsDe1dHFnu/x2+zVjNkwStllrt28CJfDZhTanlydAJbpq4kcId+L9br+bTAxtWRlV2nsHfmj/Sa/1KZ5XouGMfeGT+wsusUbFwdcfMuarstnWxx7dycB8VuPp1ZtZuf/Gbzk99sAj79lYgz13XWYZQUEq0XjuXwyM/Y5T0dlwHtsCrRDtYb4U1uSgY7O07hxup9eM5Rt4OSgYIO37zB2Rlr2O0zgwNDFyDn5SMZKPD6eBR/DVvAnu6zSLkeQcNxvjrJp0wKBa4LX+PGyPkEe79D9QGdMWugfWzlRsUT+u43JPxxTGu5dbdWKJu7canHZK70eR+nCQMwsDDTZfSP1NjbAztXJxZ6v8vWWasZuuDVMstdO3iBZQNml1oedS2cL/vN4ove73Np7xn6zhxZ2SE/OYVEi0XjOPXiZxzsMo1agzpgWUZbf/GdlUT+cVJPQZZPUki0WTiWQyM/40/NsVXyGqO+5tja0XEK10scWx2/eYMzM9awq9ixBXBt5W7+7DKdPb6zqdG6Ic4++rs2BGiiad8/8n6HTbNWM7yc9v3ywYt8XkYdBDAxN8V7nB93Am9XZqhVn6yqnJ8qorKeabQGSnUaJUkyLG9dVWTq/hx5ETHkRcZCXj6pe45g/nx7rTJZZy8hZ+cAkB18A0MHu8J1kokxkpEhkrERkqEBBYnJOo2/uIY9WnHpd/XJNCowBFMrJRY1rLXKWNSwxsTCjKjAEAAu/X6M53xbPfHfaNq/Pdf+PPX4ghXEzrMeaeFxpEfEo8or4M6O09TpqR1vHd+WhGxV5x2++yxOnYouxOv0bEV6RDwpN6O0tlEYGmBgaoxkoMDQzJjMWP3tt8fx8mhONStLfYfxt1i3rE/mnViy7t5HzisgevspHHp5aZXJupdA2rUI5BJTPTLCYsm8EwtATlwyuQmpGFe30lnsj2LpWZ/sO7FkR9xHzssnfvsJbHu21iqTcy+ezOt3Sz8sL8soTIxQGBuiMDFEMjIkNz5Fd8E/RlPfVpzfpj6OIgJDMLVUYmlvXapcRGAIaWXEnRyZQMyNCGQ9v1muQY9WXPld3WGPDgzFxMoc8xLtoLmmHYwODAXgyu/HaehbVD+7fziKw4s2l5tLkwHtubZDd+1g9RLt4N0dp6ldoh2s1bMlYZp2MGLXWRw07aBT1+akXL9HyrUIAHKT09XHnCSBJGFoZgKAkYUZWXpsBy0865MdHkNORBxyXj6JO45j07ONVpmcyLKPLbOGtUg7fQ0KVKiycsi8Hk41H09dhv9IzXy9OL/tKAB3A0MwK+fYulvOsRVy6hp52bmaMrexdrStzHD/FhvP+qTfiSMzQt3WR24/hWOJupl5L4HU6/eq5AtESh5b4TtOU+sxx5bjY46tgqxc4k5eB0CVV0DS5XCUTvrdZ+6+rTmrqYPhgbcxszTHqow6GB54m9Ryzkt9p7zAgZU7yM/JrcRI/wVUcuX8lEGSpF6SJN2UJClEkqQZ5ZT5nyRJ1yRJuipJ0i9Pm15ldRoXA/UkSQqSJOmcJEnHJEnaCVwrse5zTXkrSZJ2a5JfKUmSAkCSpHRJkr7UJHtQkiR7zfK3Nf8IlyRJ2lxJOWBYozr5sfGFv+fHJWDkUL3c8tWG9CTj2HkAsoOuk3kmGLejv+B29Bcyjl8gN+xeZYX6WJaOtqRGJxb+nhqbhKWDjXYZBxtSY5OKysQkYVnsBNR6jC+v71tEv89fw7SM0Z0m/dpxRYcXS0pHGzKii+LNiElC6WhTbhm5QEVuaiYmNhYYKk1o9mZfgpZu0yqfGZvMlZV7GHb2K14IXE5uaibRR69UfjL/IaaONmQVq4vZ0YmYlthvT6KaZz0URoZkhsdVZHj/mImTLTnRRaNPuTGJmDzhxUDahVs8OHmVtsGraRu8muTDQWTdjnr8hjpSzcGWlGL77EFsEtWq0MXpk7J0tNFqB9OeuB1Ul2nQoyVpscncvx5R5ucbmhrj1tWdm3vPVUL0ZTNztCGzWDuYGZOEmdOj28G81ExMbC2wdHMEWcbnl+n03j+fJhP7qMvkF3B2xhr6HFrM4MDlVGtYk9BNATrLqSRjx+rkFttvuTGJGD/hsZV5LRxrH08UZsYY2lpi1aEZJs52j99QR6xKHFspT3Fstf2fD9cDgioosqdn5lSirY9JwkzPHaS/Q1nGsaUs49jKLOPYsnJzRJZlnv9lOn7Fjq3ijKyU1OzhSezxq5WbyGNYO9iQrFUHE//WzYdaTV2xcarO1cOBlRGeUAZJkgyAb4HeQBNghCRJTUqUaQDMBDrKstwUePdp/25ldRpnAKGyLHsA04CWwDuyLDcsvk6W5Wma8m2ASagTrwcM1iw3B85rkj0CzC32+Z6yLLsDEyoph7/Fst/zmDRrQPKPvwFgVMcJ43p1CPMZRZj3SJTtPDBrVXWmm/1dFzb8xfIu7/F971mk30+hxwfaU2CcPeqRn5VL/K1IPUX493hMGcy11fvIz8zRWm5cTUmdni35rd17bGk5CSOlCW6DO+opSqE8JjWs8Vg+keB3Vz4T34tk6uKIskFNzniO54zHeKw7NcOqbWN9hyUUY2hqTIc3+3Ns6W/llmnQ3ZPI87d0NjX1aSkMDbBv05CTb32H/8CPqdXLC4dOTZEMDWg4pjt7fGezzfMtkq9H0HRSf32H+488OBJM8sELNN25iPrfTSb9wi3kgqo3qvW0Wg3sRG13Nw5//+fjCwuVTjI0oEabhpx46zv2D/yY2r28CkchQT19tdN3b3Lzx/2kR8Q/4pOqNkmSGPLBaLYtWP/4wv8BskpVKT9laAOEyLIcJstyLrAZGFCizGvAt7IsJwPIsnz/afPT1YtwzsqyXPqpWu31YQCSJG0COgG/ASrg4RPCG4CHw0KXgI2SJG0HtldGwAD59xMxdLQv/N3QwY68uMRS5ZTtPbEdP5zIMdOQ89QvTLHo3pHs4BvImdkAZBw7h6lHY7Iu6O6OkteYHngO9wEg+lIYVs5Fo6RWjrakxWlPN0qLS8aq2N0lKydb0jR33DMSUguXX9x0mOE/TdXatmm/9lzZqdtnEjJjkzF3LorX3Mm21FTSh2UyY5KQDBQYWynJSU7H3rM+Ln3a4DV7OMZWSvW0kZw8shIekBYRT06S+oU/d/eep4ZXA8K2Va0XJ/ybZccmY1asLpo6Vyf7b0x9M7Qwo/XG6dxctIWUCyGVEeI/khOTpDWCYexUnZyYpEdsUaS6XxtSL9xGpWkvkg8FYuXVkNQz1ysl1ifRYXQP2o54HoB7wWFYF9tn1RxteRD7ZLnpW8sx3fHQtIMxJdpByyduB5OxqVuDarXteXnvwsLl43bP5+cBc8mIfwBA437tubZTd7MtALJik1EWaweVTrZkxZTdDmZp2kEjKyU5SelkxiRx//TNwhfcRB8Kxra5C3lpWQCk31VfY0TsPEOTt/rpKKPScmMTMS6234ydqpP7hMcWQPTXvxP99e8A1P/2XbLDois8xr+j42hf2hUeW6Fax5b1Pzi2GnRsRve3BvHtCx9RkJtfobE+jayYEm29k7oO/ltklnFsZZZxbCmLXWMUP7biyji2Ho4qtv38FdLuxHLjh/26S6iYLqN96TCiGwB3g0Ox0aqD1Ul5wjpoYmGKU8PavLP5QwCs7K0Z/8M0Vr36uXgZTuWqCRSfvhgJtC1RpiGAJEknAANgnizL+57mj+rqexofd9u15FBBeUMHD5f3QT0s2xI4p3lWssJlX76JUV1nDGs6gJEhVn5dyTis/aZGk8b1qDFvEtFvzqMg6UHh8ryY+5i1bg4GCjA0QOnVnNxQ3U5PPb/uQOFLam76n8d9SGcAanrWJzsti/T7KVrl0++nkJOeRU3P+gC4D+nMrQMXALSef2zU04v4m8VGFCWJJn3bclXHF0sJQWFYuTpiUdsehZEBrgPacc//olaZe/4XqT9MnbdLnzbEnLgGwN7Bn/Bbu/f4rd17XPthP5e+2cmNtQfIiErEvmV9DEyNAXDq1JSUKjRN8FnwIDAUczdHzOrYIxkZ4DywPXH7LzzRtpKRAa3WTiZy67HCN6pWFWlBIZi6OWFSpwaSkSH2AzuS5P9k0xRzohKo1r4JGCiQDA2o1r4pmXoetT+5/gBf+s3kS7+ZXPU/j9dg9XFUx7M+2WmZZT5fVRVdXPdX4UtqbvlfoNmQTgA4e9YjJy2TjBLtYIamHXT2rAdAsyGduH3gAvE3I/m61Zus6PQeKzq9R2pMEmv6zCnsMJpYmlGnXSNul2iDKltiUBiWro6Ya9rBugPaEVkihij/i7hp2sE6fdsQd1zdDsYEXMK6cW0MzNTPcNdo34gHt6LIik2iWsOamNiqn5d27NKc1Nv662ilB4Vg6uqESW31sVV9QCeSn/DYQqHA0MYCAGXjuigbu5ByJKjygn0CJ9b7s8RvBkv8ZnDZ/zxeg7sAUPcfHFs1m7owbOFr/Pjq56Qnpj5+Ax1KCQrFws0RpaatrzWwPbH+T9bWVwUljy2XMo6tyEccWzZlHFsALaYPxdjSjPMfbtBtQsUcXe/PYr/3Wez3Ppf8z9FGUwddPBuQlZZZ7rOLJWWnZTGj5WvM7TSJuZ0mER54+7/dYdThM41PwBBoAHgDI4DVkiRZP016lTXSmAaU93aOsta1kSTJFbgLvAB8r1muAIaiHnZ9ETiued6xtizLhyVJOg4MByyAlArNAKBARfz876j1wwJQKEjd5k9uyF2qTxpN9pXbZBw+jd20V1EozXD6Uv1GqfyYeKLfnEf6/uMo23pQd4d6+lzm8QtkBJyp8BCfVMihIOr7ePDm0aXka75y46HX9ixktd8sAPbOWUP/JeMxNDUmNCC48C2p3WaOwLFJXWRZ5kFkPLtnFX0dQN22jUiNTiLlnm6nWMgFKk7P+Zkev0xXvw57yxFSbkXhMXUIicF3uHfgIrc3H6Hz1xMYfHwJOSnpHJm4/JGfmRAYyt3dZ+m/fz6q/AKSrt7l1sbDOsro75s2dzHnAi+RkpJKt4GjmPjKaIb066nvsB5JLlBxZeZa2mxWv502clMA6TcjaTh9KCnBd7i//wLVPNxotWYyRtbmOPi2pOG0YRztOg3n/u2xbdcIIxsLar2gPsldenslqVd188beRypQETrrB5ptmoNkoCBu0yEyb0ZSd/oLpAWFkuR/HguPejT5aTqG1ubY9vCizrQXuNj1PRL+PI11x2a0OrwUkEk6FETSgapzcXX9cCCNfDyYcWQZeVk5bJlW1H68t2cRX/rNBKDPjBfxHNABIzNj5pxaztkth/Ff9ju13d0Yu2oyymrmNOnWEt/3hvGF77Ty/lylCT0URD2fFkw4uoS8rFx2T/2+cN3Lexbwk5+6Hd8/Zy19l7yOoakxYQHBhBZ7w3J5Gvb04s7Ry+Rl5Ty2bEWSC1Scn/0zz/8yHclAQejmIzy4FYX7NHU7GOV/kZBNR+jw9QT6n1C3gyfeULeDuQ8yub5qL732fAyyTPShYKIPBgFweek2evwxB1VeARlRCZx69/tHRFHJClSEz/6BRr98iGSg4P7mg2TduketacPJCA4l2f8c5i3q0/DH9zG0Nse6R2tqTX2BSz7vIhkZ0OSPBeqPScsiZNIyqELTU68fDqSxjwezjnxFXlYOm6YVfXXSlD2LWeKnfr9F3xkv0nJAR4zMjPnw1Lec2XKY/ct+o9/MkZgoTRj73bsAJEcl8NNrX+gjlVLkAhWXZq2lw6YZ6q/c2BRA2s0oGk0fSkpQGLH+F7H2cKPtT+9hZG2OY4+WNJo2lENdp+s7dEAd/7nZP9OtjGMrKfgOkZpjq+PXExigObaOlzi2emuOrahDwUQdDELpZEvzdwfy4HYUfv7qN5/fWnOAkF8C9Jbn1cOBNPXxZO6Rr8jLymXDtKKvh5ux51MW+70PwIAZI/HS1MFPTn3HqS2H2LOs/On6QqWKAmoX+72WZllxkcAZWZbzgDuSJN1C3Yn8xw/dS5X1NjvNW3rcgSwgTpblvmWs2wvsBj5G3ZmsDxwGJsqyrJIkKR11B9IXuI+6Q5miKVMNkIANsiwvLiME+VbjXpWSmz41vL6PT+pWoVdqV5AP7m5kbc1R+g6jQr0UtYG8hGfvbpuRnRu7HUboO4wK1yduE8cch+o7jArVOfY3pro8e/vqi/BNLKr7bLUXADPvbmCj87OX18joDZx2Hvz4gv8i7aK3Mdll+OML/sssDd/MdscX9R1GhRsY+wsbnrFja1T0Bt5yeUHfYVS45eFbJH3H8E9lzB9VKZ0q8zkbtP5NNDMsbwHdUHcWzwEvyrJ8tViZXsAIWZbHSpJkBwQCHrIsl37O7glV2jONsiyX2+qUsa7LI8pOLmNxp38alyAIgiAIgiAIQoX651NJ/xZZlvMlSXoL2I/6ecWfZFm+KknSx6hfILpTs85XkqRrQAEw7Wk6jKC7F+EIgiAIgiAIgiAIT0mW5T3AnhLLPiz2/zIwWfNTIap0p1GWZQt9xyAIgiAIgiAIgvBIZX89xjNDV29PFQRBEARBEARBEP6FqvRIoyAIgiAIgiAIQpWno2ca9UV0GgVBEARBEARBEJ6GLKanCoIgCIIgCIIgCP9RYqRREARBEARBEAThaTzj01PFSKMgCIIgCIIgCIJQLjHSKAiCIAiCIAiC8BTkZ/wrN0SnURAEQRAEQRAE4Wk849NTJVl+ZhN8ZhMTBEEQBEEQhGeQpO8A/qn09wdXSt/D4tNtVeLf5JkeaTxfa6C+Q6hwXpHbGV13sL7DqHDr727jQ5eR+g6jQn0cvpHdDiP0HUaF6xO3ibyEMH2HUeGM7Nz4rvYofYdRoSbe28BEl//pO4wK9134r3xV59naVwDvRGxgo/Ozl9fI6A2sq/ls5TUmagPfPGPtBcCkexvY5PxsnYsBRkRvZJvji/oOo0INjv2F2S7PVk4AC8J/0XcI/9wzPtIoXoQjCIIgCIIgCIIglOuZHmkUBEEQBEEQBEGodPKz/SIcMdIoCIIgCIIgCIIglEuMNAqCIAiCIAiCIDyNZ/yZRtFpFARBEARBEARBeAryM95pFNNTBUEQBEEQBEEQhHKJkUZBEARBEARBEISnIUYaBUEQBEEQBEEQhP8qMdIoCIIgCIIgCILwNFTP9lduiE7jY1h5e1Lno1fBQEHCpgPEfrtNa73Da/2xG9EDuaCA/MRUwqd8Q25UPAANNnyIuedzpJ+7RshLC/QR/hMbPe8VWvi0JCcrh++nLufulTCt9camxkxaMY0adRxQqVQE/nWeXz/doKdotfnNHUMDnxbkZeXyx9RVxFwNL1XGqZkLg7+YgKGpEbcPB7Pno3UADFs+CTs3JwBMrZRkp2aywm8W7gM60HF838LtHRrVZmXfOcReu6uTnIqz92lBk/ljkAwU3Nt4mNBvdmqtt23XiCafjMGySR0Cx39N7K6zAFg1rUuzz17G0EKJrFIRsuwPYnac1nn8/8SchUs5euIstjbWbN+wUt/hPFJtb3c6zRuNwkDBtU0BBH73p9Z6hbEh3ZdNwL65K9nJafhPXE5aZAIm1hb0WvU2NVq4cWPrUY59sK5wm77rp6OsUQ2FgQExZ29ydM5avT9gP2zuOJr6eJKXlcO6qd9x7+qdUmX6Tx1O28FdMKtmweSmYwqXtxvalUEzR5MSlwTAkZ/3cXLLIZ3F3vWj0bj4eJCflYP/lO+JvxJeqkyN5i70WDIeQ1Njwg8HcWTuegBMqpnj991bWNWyJzUynj0TvyHnQSYm1ZR0//x1rOvWID8nj7+mribxViQAHi/3pOkIbyRJ4sqmwwT9uL9S83Pydsfrk9FICgUhmwK4trx0Hezw9QRsm7uSk5zG8QnLyYhMAMC6cW3afPoyRpZmoJLZ6/chCkMDemz/oHB7pZMt4b+f4MJc3bb5zt7utP64KK8r35bOq9NXRXkdfUOdl3ktOwYEfEZqWAwA8RdDODNjjda2PmsmY1HHnj+7zdRZPsV1+Wg0dZ9X18m/JpddJ+2bu9B9qbpO3j0UxNGHddLanF7fvoVVbXtS78WzT1MnH6rRwo1h2+ey783lhO45p5N8nLzdaampg6GbArheRh1s9/Ub2DZ3ISc5nZMTviEjMoG6gzrQeGLRuda6cW329ZxDytW7uL8/DJdhnTGuZs5vDV7RSR4lOfi44/6J+vwbvvEwt8rIy+ubN7B2dyU3OZ2z478m814CkpEBLT9/FesWrsgqmUsfrCPh5HUAag5oR6N3BiIZKIg5cJGr8zfrIzX6zB3Dcz4e5GXl8vvUlUSXce3k3MyVIV+Mx8jUmJuHg9ituXZyalKX/gtexsjECFW+ip0frCEyOBTXdo0Z9f0UkiPvA3B13zkOf/2HLtPSLzE9VbckSVorSdLQv1HeRZKkK5USjEJBnfnjuTX6Y676TMJ2QGdMG9TSKpJ5NYzrflO41uNdknefpNbssYXrYlds5847yyoltIrUwqclDq5OTO36Jj/NXMm4+a+XWW7P9zt4v9vbzPGbSkOvRrh7e+o40tIaeLeguqsjX3lPYeesH+m3YFyZ5frNf5kdM3/gK+8pVHd1pIF3CwC2vvUNK/xmscJvFtf2nuP6PvUJ9tKOk4XLf39vBSn34vXSYUQh0XTxOM6++ClHOk/FeVAHLBrW1CqSFZVA8Dsrid52Qmt5QVYOQW+t4GjXaZwdvpgmn4zB0Eqpy+j/sYF+PVi5dL6+w3gsSSHRZf5Ydo/5jE3PT6fBgHbYNHDWKtN4uDc5KRls7DyF4B/20X7WcAAKcvI488VvnJz/S6nP3f/GN/zaczabu8/AtLol9fq21Uk+5Wnq7UkNV0fmeb/NxlnfM3zBq2WWu3TwAp8OmFXmugu7TrLIbzqL/KbrtMPo4tMCaxdHfu4yhYMzfuT5BS+VWc5nwTgOvv8DP3eZgrWLI3W93QHwerMf905c4+euU7l34hpeE/sB0PrNASRcu8vGnrPwf28lXT8aDUD1hrVoOsKbLf3msrHnLFy7eVKtrkOl5ScpJFovHMvhkZ+xy3s6LgPaYVWiDtYb4U1uSgY7O07hxup9eM5R10HJQEGHb97g7Iw17PaZwYGhC5Dz8snPyGZvj9mFPxmRCdzTUeejeF5tF4zl4KjP2OkzHZeB7ahWIq8GI7zJeZDB9k5TuL56H61mDy9cl3Y3jl2+s9nlO7tUh7FOby/yM7J1kkdZ6vq0wNrVkfWdp3Do/R/xXvhSmeV8Fo7j0PQfWN95CtauRXWy1cR+RJ64xvouU4k8cY1WmjoJ6n+3DjNfIOLoZV2kUvg3Wy18iYCRn7HHezp1B7THqoH2ecpNUwd3dZzCzdV7aTFnBAB3/zjJvh6z2NdjFqcmrSA9Ip6Uq+pzbdSBQPz9PtRZHqUoJFosGseJFz/jQJdp1BrUAcsS51+XF9V5+befTMiqvTTT5OU66nkADvrM4MQLi2g+dxRIEsY2FjT/4EWODVvAX12nY1rDGvtOTXWeWkNvD+xcHVnqPZnts36g/4KXyyw3YP7LbJ/5A0u9J2Pn6khDzbVTzxkjOPzVNpb7zeKvpb/Rc+aIwm3Cz91gud8slvvN+m91GP8DqlynsSox92hATngMuRFxyHn5JO04jrWv9sVb2skrqLJzAUi/eBNjp+pF605cQpWRpdOY/4mWPdpw/PcAAEIDb6G0MqdaDRutMrnZuVw/pe6bF+TlE34lDFvH6iU/Suca+bYiaNsxACIDQzC1VGJhb61VxsLeGhNLMyIDQwAI2naMRr6tSn1Wsz5tubTzZKnl7v3bc/nPUxUf/BOwblmfzDuxZN29j5xXQPT2Uzj08tIqk3UvgbRrEaVGojLCYsm8EwtATlwyuQmpGFe30lnsT8PLoznVrCz1HcZj1fCox4PwOFIj4lHlFRCy8zSuJeqWq29LbvymrqOhu89Ss6P6AiE/K4fYc7fIz8kr9bl56ep2Q2FogIGRIcj6vXvp7uvFmW1HAQgPvI3S0hyrEsfZw3Wp8Sm6De4x3Hxbcf334wDEBoZiYmWOsoa1VhllDWuMLcyIDQwF4Prvx6nXU32c1evRimua/Xftt2PU81Uvt21Qk3snrwGQHBqDZS07lHZW2DRwJi4wlPzsXOQCFVGnb1C/t/YxW5Gqe9YjLTyOdE0dvLvjNLV7atfBWj1bErZVnUPErrM4aC5Snbo2J+X6PVKuRQCQm5xeqh2xdHPE1M6K+2duVloOZSmZV3gZedX2bUmoJq+7u8/i+AQX34ZKE5q83ptLX22vjLCfSPE6GfeYOhlXrE66aeqkm28rrmvq5PXfjhUuB3Af50vo3nNkJabqIBM1W896pIfHkaHZVxE7TlOrVB1sxZ2t6jbk3q6y91Xdge2J2FF0rk28GEL2/ZRKjf1RbD3rk3EnjswI9fk3cvspnErk5dTTi4hf1fsiatcZ7Ds1A8CyYU3uH78KQE5CKnmpGdh4uGFetwbpd2LJTUwD4P7RK9Ts20aHWak19m1FoOba6Z7m2smyRJtuqbl2uqe5dgrcdozGvkV1zcTCDABTKzPS4pJ1E3hVp5Ir56eK0HunUZKkMZIkXZIkKViSpPWaxV0kSTopSVLYw1FHSe1zSZKuSJJ0WZKkFyo7NmMnW3JjEgp/z41NxNjJttzy9iO68+DwxcoOq8LZONqSFF2UZ1JsIrYO5eeptFLi2d2Lqyd0dyezPFYOtjyITiz8PTU2CStH7Q6vlaMNqTFJRWVikrAqkV/dNo1IT3hAUnhcqb/RrG87Lu/UT6fR1NGGrGL5ZUcnYloivydRzbMeCiNDMsvIT/jnzB1tSI8uqlvpMUmYl9g/xcvIBSpy0zIxtbF47Gf33TCdlwK/Izcjm9DdZys28L/J2sGW5GJtRHJsItaO5bcRZfHs3ZbZez/n1e8mY+OkuxtOFo42pMcUHUPpsUlYlNhHFo42pMcmlVlGaWdFpubCNfN+Cko79Y2XhOsR1NfcwHFo4YZVTTssnGxJvBmJc5vnMLW2wNDUGBefFlhUYr5mjjZkFquDmTFJmDlp56d0tCGjWB3MS83ExNYCSzdHkGV8fplO7/3zaTKxT6nPrzugHXd36n5ae/GYQZ2XssR+K557YV6aY8uijj1998/H97fZ1GjzXOE2HtOHcnXVXvKzcnWQRdnUbUKxOhlTTp0sdt7KKNa2lFcnzR1tqNfLi8vrDlZyBtqUjrZkFsunrDpYcl/lpmZibKvdDtbp34672/Vzri2LqZP2+TcrJgmzEteAxcvIBSry0jIxtrXkwdUInHq2QjJQoKxjj7W7K2bOtqTficOynhPK2nZIBgqce3lh5qz7G/BWDjY8KHZ8lXft9KBYHXwQk4SVg7rM7o/W0Wvmi0w7+Q29Z43E/7MtheXqtGzAW3sXMXbtdGqUGHEW/t30+kyjJElNgTlAB1mWEyRJsgWWAk5AJ6ARsBP4DRgMeAAtADvgnCRJR/URd1lsB3dF6V6fm0Nn6zuUSqUwUDDxm8n4r9lD/L1npwPSvH/7MjuGtTzqkZeVy33Ns0r/RiY1rPFYPpHgt1fofcRKeHK7Rn2GgYkR3b9+g5odmxJ5rHJm4evC5b8ucH7nCfJz8+n0YnfGLHmTr178WN9h/SMPj6Dz3/1J13mjeXHvAhJu3iP+6l1UBSqSQ6K5sGIXAze+T35mDvHX7iJX0ZcjKAwNsG/TkH1+H5KflUu3LTNJvBROnGaEBMBlQHtOTlqhxyj/vqz7KWxr8y45yenYNnfB56f32OkzA4u69ljWdeD8vI2Y17LTd5gV5mGz3nnuKE4s3PyvbOere9ajICuXBzf/vefa4u5uCsCygTM+++eTGZlA0vnbyAUyeQ8yCHx/DW1WvY2skkk6fwvzSpy+XlnajOrOnk/Wc3XfOZr1acugT19nzaiFRF8J5/OOb5ObmUNDbw9Gfj+FL30m6ztcnZH/hcfe36HvF+E8D2yVZTkBQJblJEmSALbLsqwCrkmS9PBo6gRskmW5AIiTJOkI0Bq4VFnB5cYkYexUdGIxdqxObrG7Lg9ZdnLHadJQbg6dg5ybX1nhVKjuY3rhPbwHAGGXQrB1LsrT1rE6SXGl8wR4efEbxN2JYf9Pu3QSZ1najO5BqxE+AEQFh1Gt2F06K0dbUmO1p0mkxiZjVezuoJWTLanF8lMYKGjSszUr+80p9bea9WvP5TKmrOpKdmyy1l1IU+fqZMc++TQQQwszWm+czs1FW0i5EFIZIf6nZcQmY+FcVLcsnGzJKLF/HpbJiE1CMlBgbKkkOzn9iT6/ICePcP+LuPq21HmnscvonnQc0Q2Au8Gh2DjbAeopijaO1UmJLbuNKEtGSlG+JzYfZNCMURUaa0nuY7rTTNNGxF0K0xrps3C0Jb3EPkqPTcai2Mhp8TKZCakoa1irR3RqWJOVoJ72l5uexYGp3xduM+7El6RGqF+CdnXLEa5uOQJAh+n/0xoxqmhZsckoi9VBpZMtWTHa+WXGJmPubEtWjLoOGlkpyUlKJzMmifunb5KTpN4/0YeCsW3uUthptG5SB8lAQdLl8EqLvzwPY35I6WRLZon99jD3zOJ5aY6tnFz1f5Muh5MWfh8rN0eqe7hR3d2Vwae/RDI0wLS6Fb5bZ+M/rPJfVNd8bHeaaurk/eAwLIq16xZO5dTJYuct82JtS6k6qZmKWsPdlV7fvgWAqa0ldX1aIBeoCNt/oVJzy4xNQlksn7Lq4MN99bAOGlspyU0qahfqDGjP3e36O9eWJTtG+/xr5qSOv6wyhceWpZLcJPXU08vFXhzV9c95pGtezBR74CKxB9Sz0lxGPY9coJubSm1H96C1pg5GBodRrdjxVd61U7VidbCaky2pmmmoLYd0KXwpzpXdZxi0+DUActKLHsm6FRBE//njUNpYkpmcVjlJVTVVaCppZdD79NRy5BT7f0lfQWQE38bU1Qnj2jWQjAyxHdCJlAPa08TMmrpSd/FEQl5eSH7iAz1F+vf9tW4fc/ymMMdvChf8z9JpiDcA9TwbkpmWyYP7pTsmQ6eOQGmpZMNHP+k4Wm1n1x8ofEnNDf/zeAzuDEAtz/pkp2WRXuKZqvT4FHLSsqjlWR8Aj8GdueFfdBJ169SMhLBoUktcBEuSRLM+bfX2PCPAg8BQzN0cMatjj2RkgPPA9sQ94QWAZGRAq7WTidx6rPCNqkLFuh8cRjUXRyxr26MwMqB+/3bcOaA9RT38wEUaDVXX0Xp92hB14tojP9NQaVL4fJNkoKBuNw+SQ2IqJf5HObp+f+GLay75n6Xt4C4AuHg2ICst8289u1j8+Uf3Hl7EhlbuaMKldX/xS+/Z/NJ7NqH7L9B4SCcAHD3rkZOWWTi176HM+ynkpmfh6FkPgMZDOhGmaSPCDlykiWb/NRnamdAD6uXGVkoURgYANB3hTdTZG+RqLpjMNM8OWzpXp14vL27sqLyL4cSgMCxdHTHX1MG6A9oR6a9dB6P8L+I2TJ1Dnb5tiDuuroMxAZewblwbAzNjJAMFNdo34sGtqMLtXAa2J3yHftq/h3lZaPJyGdCOeyXyuud/kXqavOr2aUOs5tgysbVEUqgvHSzq2GPl6kBaxH1urTvIb60msa3de+wb+DGpYTE66TACXP75Lzb3ms3mXrMJK1YnHTzrkfuIOulQRp28c+AijTV1svHQzoXL13WczM8d3uPnDu8RuucsAbPXVnqHESCpRB2sM6Adkf7afzfK/yKuw9RtSO2+bbRGs5Ek6vRry1091bXyJAeFYuHmiFJz/q01sD0xJfKK8b9Anf+p90XNvm2JP6HOy8DMGAOlCQA1ujRDzi8gTXNsmWimExtVM8ftpe6Ebzysk3zOrD9Q+IKa6/7n8dRcO9X2rE9OWhZpJdr0NM21U23NtZPn4M5c1+Sfej8Z13aNAXDr0JREzaMvFvbVCrev1aIekiT9dzqM/wH6Hmk8BPwhSdJSWZYTNdNTy3MMGC9J0s+ALdAFmAaYVlp0BSoiPlhNw41zQWFA4pa/yL51D+epI8gIDuHBgXPUnvMSBuam1Fs5HYDcqHhCXl4IwHO/L8S0fk0MzE1xP/cD4VOXk3okqNLC/aeCD13Aw6clXxz9jtysHFZPXV64bv6eJczxm4KNY3UGTBpGVEgkn+z+AoAD6/ZyZPNf+gobgFuHg2jg48G7R5aqv3Jj2qrCdW/sWcgKP/WbHHd9sIZBmtdG3w4I5nZAcGG55v3ac6mMqal12zbiQUwSyffiKz+RcsgFKq7MXEubzTORDBREbgog/WYkDacPJSX4Dvf3X6Cahxut1kzGyNocB9+WNJw2jKNdp+Hcvz227RphZGNBrRfUJ+tLb68k9aoe3gL7N02bu5hzgZdISUml28BRTHxlNEP69dR3WKXIBSqOffAz/TZMRzJQcGPLEZJvRdF6yhDiL90h/MBFrm8+QrdlExh5bAnZKekceLPo+Bp18kuMLc0wMDLEtacXf45cTHZyOn4/TcbA2BAUElEnr3N1g26fUSrpyuFAmvq05KMjX5Oblcv6ad8Vrpu55zMW+anbv0EzRuI1oBPGZsYsOLWCk1sOsXvZVnzG9aZ5dy9UBQVkpqSzbup35f2pChd+KAgXnxaMPbaE/KxcrdHBF/cu4Jfe6kcKDs9ZS48lr6u/3uBwMOGH1W3E+e/+xG/FJJq+0JXUqAT2vPENALb1nfFdOh5kSLwVyV/TVxd+bp9V72BqY4EqL5+AD34mNzWTyiIXqDg/+2ee/0VdB0M3H+HBrSjcpw0hMfgOUf4XCdl0hA5fT6D/iSXkpKRz4g11Hcx9kMn1VXvptedjkGWiDwUTfTCo8LPr9GtLwOjPKy32x+V1ds7PdP9luvorN7ao82oxVZ1X5IGL3N58hE5fT2Dg8SXkpqRzdKI6L4d2jfCYOgRVfgGySub0zDXkpmToJY+yhB8Kou7zLRhzfAl5WbkcnFJUJ4fvW8DmXuo6GTB7Ld2XFtXJu5o6eeHbP+m1YhJNhnclLTKBvRO/0UseD6nr4Fq8f3kfyUBB2OYjpN6Kovm0ISRp6mDopgDaf/0GfU8sITclgxNvFMVco10jMqOTyIjQPtd6zBlB3YEdMDQzZsD5bwjddJgrS7aV/POVmlfQrLV03DQDyUDB3U0BpN2MovH0oaQEhRHj/3/27js8iuIN4Ph37tIbKQQuoSWh9wRCbwklQOhFBaSI+pOiCAIiVVCqCDZQwUaRqoiIdJDea+gdAqR30uvt7487QhqCktyFOJ/nyQPZnb173+ze7M7O7NxZAtfsx3vxSPyOfUZ6XBInh+nyMi9tR4u1E1G0CqlhsZzKMcS73szBlKpdEYBrC38n8U6YwXJ65Pq+AKr5ejL2wOdkpKSxMce10zvb5rBYf+20edpP9FkwHBP9tdON/QEAbJr4A12mD0ZloiIzLYNNk34AoE7nJjQe2B5tVhYZqemsH2XcY9PgSnhPozD2+FshxBB0jb8s4Jx+8RZFUTbo1ycqimIjdONW5wOd0T1WMktRlPVCCDd9+Tp5Xlo5Xb6nIVIwKO+gTQyq1NvYYRS6n+9t5EO3V40dRqH6OHA1W8v2f3rBF0yX8LVkRN15esEXjGlpD76pULTDJg1t5INVjHR72dhhFLpvAn/hy4ola18BjL6/itWuJS+vV0NWsbJcycprcPAqFpWw+gJg1INVrHUtWedigP4hq9moGWDsMApV77A1THErWTkBzA5cY7QRhs8r/o0ORdKosvtxd7H4mxi7pxFFUVYAK/5mvY3+XwVd4/L9POsDgbwNRkmSJEmSJEmSJIPI+5VFJU1xfaZRkiRJkiRJkiRJKgaM3tMoSZIkSZIkSZL0QivhPY2y0ShJkiRJkiRJkvQ8iudX8hYaOTxVkiRJkiRJkiRJeiLZ0yhJkiRJkiRJkvQc5EQ4kiRJkiRJkiRJ0n+W7GmUJEmSJEmSJEl6HiW8p1E2GiVJkiRJkiRJkp6HnAhHkiRJkiRJkiRJ+q+SPY2SJEmSJEmSJEnPoaRPhCMUpcQmWGITkyRJkiRJkqQSSBg7gH8r9iWfIml7OPy6v1j8TUp0T+PWsv2NHUKh6xK+luXlBho7jEL3WvAqNmoGGDuMQtU7bA2HNH2NHUahaxW2gW8qlLxjcOSDVWRE3TF2GIXKtLQHU91K1ucKYFbgGr6sWPKOwdH3V7G0fMnLa1jQKhaXsDrjnQermFnpVWOHUeim3VvNrrL9jB1GofMLX8f8SiXrGJxwbxULSmA9OP7+KmOH8O+V8GcaS3SjUZIkSZIkSZIkqaiV9OGpciIcSZIkSZIkSZIk6YlkT6MkSZIkSZIkSdLzKOHDU2VPoyRJkiRJkiRJkvREsqdRkiRJkiRJkiTpOSiyp1GSJEmSJEmSJEkqDoQQnYQQ14UQt4QQE/+mXB8hhCKE8H7e95Q9jZIkSZIkSZIkSc/DQD2NQgg18DXQAQgCTgkhNiuKciVPOVtgNHCiMN5X9jRKkiRJkiRJkiQ9B0VbND8FaAzcUhTljqIo6cA6oEcB5WYCnwCphZGfbDRKkiRJkiRJkiS9GMoBD3L8HqRflk0I0QCooCjK1sJ6Uzk89SmcfetTa9ZghFrFg9X7uL1oc671jk1rUGvmYGxrVeTcsK8I23ISALvalagz/3VMbKxQtFpuffE7oX8cN0YKAJTzqUfjjwchVCpurt3Pxa//zLVeZWZCqy+H41TXnbTYBA6MWExiUFT2emtXJ3ru/4SAhRu5vHQbAH2Pf05GYiqKVos2M4st/h8aNCeAsr71qDdTt38CV+/jxuL8eXkvGoF9PXfSYxM5Oewrkh9EIUzVNPj0Tezru6NoFS5MW0nU0au5tm22YhxWlcrwl88HhkwpHwdfTzxmDkWoVYSt/ougxZtyrbdrWpPKHw/FulYlrg3/nKgtj48zt2kDcWzfECEEsQcvcGfqTwaO/rEKPvVoOWMQKrWKK2v3c+6b/Puq/RfDca7rTmpsArtGLiYhKApzexs6LX2XMvU9uPbrQQ5NW5m9TdefJ2BVphQqtZrQk9c5OHV5sf5y3alzPuPgkZM4OtizadUSY4fzVF2mD6aarycZKen8Nn4JoZcD85VxreNO7wXDMLUw48a+ALZ+pNs/mlqV6DH7dUzMTdFmatk8bRnB529nb1eungdvbfyIX0Yt4vL2k0WaR5uPBuHm60lmShq7xn1H5KX8eZSp60aHhcMwsTAjcF8AB6b/DIB5KWv8v3kHu/LOxAdFsm3kItIeJmNma0nHL0dg6+qEykTN2aXbuPLrQQBsXZ1oN/9NbF0cUYA/hnxKQo76tLBV8KlH848GIdQqrq3dT0AB9XvbL4ZTup7us7VHX7+Xa1WHJpNeQWVmgjY9k+Oz1hJyVDe6SWWqpuWsIbg0q4miVTg1/1fubjtVZDk8UtGnHq1m6HK5snY/ZwuoJzrkqCd26usJgIZvd6NmPx+ULC2Hpq/k/oGLAAw++jkZSalos7QoWVn80kV3rur4zTvYe7gAYG5nRVp8Mus7TSnyHPPqOGMwVXzrk5GSzubxSwkr4PjU1HGjx8LhmFiYcmvfeXbOeFwPNnrND+9BHVC0Wm7uDeCvuWsNGH1+Tr71qTFrCEKtImj1XgLzXDc5NK1B9ZlDsKlVkYvDviJ8S+6Rc2obS1ocWkDE9tNcm7zMkKEXqN2MQXj4epKRksb28d8RXsD+KVvHDX99/XFnXwB/zdDVHy3H9aVKhwYoWoXk6Hi2j1tKYkQctXo2p/HwrgghSE9KYdeU5URevW/QvNp+NAh3fb24fdx3RBSUV103OunzursvgL36erHN5P54tPdCm5FJ3L0Idoz/jrT4ZFQmajrOf5MyddxQqVVc3niYk3nqoxKtmEyEI4RQAZ8BrxXm6xbLnkYhxLtCiKtCiNVCiPFGC0QlqD1vKCcHfMKBVuNx7dUcm2q5GvKkBEdxfvQSQjYeybU8KyWNgHe+5WCb9znZbx61Zg7GxM7KkNFnEypBk9lD2D1wPpt8J+DesymlqrrmKlO1vw/pD5PY2HIcV77fQcMp/XKtbzTjVYL3nc/32jtems1mvylGaTCiEtSfO5QjA+azu/X7lO/VHNs8+8dtgA/pcUnsajaWW0u3U2dqfwDcB7YF4C/fiRx5ZS51pw8EIbK3c/VvRGZSofTmPx+Vispz3+TygNmcaf0ezr1aYlWtfK4iacFRXB/9NRG/H8613Na7OnaNanDWdxxnfMZi61mZUs1rGzL6bEIlaD1rCFsHz2dt2wlU7dEUhzzHYM1+PqTFJbG61TjO/7CDZpN1x2BWWgYnFmzg6Kw1+V5354hF/NJxCuvaT8TCyZbKXZsYJJ9/q6d/B5Z8NsvYYTyTaj6eOLlr+NxnLJsm/0D32a8XWK77rNfZNOkHPvcZi5O7hqo+9QHoNLE/e7/cyNf+k/nrsw10mtQ/exuhEnSc2J9bhy4WeR5uvvWxd9OwovU4/pr4I21nv1ZgOd/ZQ/nrgx9Y0Xoc9m4aKvnUA8D77W48OHKFFW3G8+DIFbxHdgOg/uAOxNwMZk2nKfz28mxaTRuAylQNgN/nwzm7dCs/t/uA9d0+JCUqvsjyEypBi1lD2DZoPr/4TqBKj6bY5/ls1ejnQ9rDJNa1HMfF73fQVP/ZSo1JYMfQhWxoP4l97y2l7VfDs7dp8G4PUqLiWd/6fX7x/YDQY7lvqhVVLm1mDeHPwfNZ03YC1QqoJ2rp64lV+nqiuT4Xh6quVO3elDXtPmDzoPm0mf0aQvW4Tv/95dms7zQlu8EIsHPkYtZ3msL6TlO4vf0Ud7YXfaM4ryq+9XF01/B1m3FsnfQj/rOGFljOf/brbJn4A1+3GYeju4bK+s9ZpWa1qNahId91nsSSDh9w7LtC61T4d1SCmvNe5+yAeRxpNQ6XXi2wznfdFM2l0d8Slue66ZEqE18m9vg1Q0T7VB6+9XFw1/B9m3HsnPQjHWa9VmA5v9lD2THxB75vMw4Hdw3u+vrj5NKtLO80mRX+U7j91zmaj+4FQNyDSNa+PItlHSdx9KtNdJxbcP1aVNx96+PgpuHH1uPYNfFHOjyhXmw/eyi7PviBH1uPw8HtcV6Bhy6yvMNEVnScTOzdUJq8rasXq3VpjNrMhBV+k/i5yzTqD2iLXfnShkrrvyQYqJDj9/L6ZY/YAnWA/UKIQKApsPl5J8Mplo1GYCS6hztvGjMI+wZVSL4bRsq9CJSMLEI2HaNsp9x/75QHUSRcuZ+vdyPpThjJd8MASAuPJT0qHjMnO4PFnlNpr8okBIaTeD8SbUYWd/84TsWODXOVqejXgFu/HgIgcOtJXFo+blxU7NiQxPuRxF0Ppjhx9KpC0t1wku/r9k/QpmO45MnLpaM393/R5RW85QTOLesAYFutHBGHLwOQFhVPRnwSDp4eAKitzKkyzJ9rX2wyXDJPYOtVhdS7YaTej0DJyCRy0xEcOzbKVSbtQSTJV++BNs8tLkVBZW6KyswElbkJwtSE9Mg4wwWfQxnPyjwMDCdefwze2nwcd7/c+8rdrwHXNuj21e2tJynXQncMZqakEXbqBplpGfleNyMxBQCViRq1qQkoxbeXEcDbsy6l7GyNHcYzqenXkICNuv0RdO4WFrZW2Djb5ypj42yPua0lQeduARCw8RC1/HR1pAKY21gCYGFnSXx4bPZ2TV/ryOXtJ0mKfljkeXj4NeTqb7obKmHnbmNuZ41Vmdx5WJWxx8zGkrBzup7Qq78dpnJHXR6VOzTkiv64vLLhEJWz81Mws9blZ2ptQWpcEtpMLY5VXVGZqLh/6BIAGclpZKamF1l+ZTwrEx8YTsKjz9Yfx3HL89ly82vADX39fmfrSVz19Xv05Xskh8cBEHs9CLWFGSoz3QCk6q+04dyjkRuKQmpsYpHl8EjZPPXEzc3H8ciTi0eOeuLW1pOU19cTHn4Nubn5ONr0TBIeRPIwMJyynpWf+b2rdG3CjT+OFV4yz6hah4Zc+E1/jjp3Cws7K2zyHJ82Zewxt7EkWP85u/DbIarr/y7eA9tx9JvNZKVnApAcXXQ3KJ5FqTzXTWGbjlImz3VT6oNIEgu4bgKwreeOmXMpovdfMFTIf6tKh4Zc1tcfoeduY2FnjXWe/WOtrz9C9fXH5d8OU1VfT6Trz1EAplbmKPpzVMiZm6TFJ+v+f/YWti6ORZ1KLlX8cudl/ox5VdHXi/cOXULJ0l1zhJy9jY1GH7+iy1OoVZhYmJGVkUl6Qgr/FQZ8pvEUUFUI4S6EMAP6Adld+oqiPFQUpbSiKG6KorgBx4HuiqKcfp78il2jUQixBPAAtgPvAfWFEMeEEDeFEP/Tl3ERQhwUQgQIIS4JIVoVRSwWGgdSQqKzf08NicZC4/CPX6eUV2VUpiYkB4YXZnjPzErjQFJITPbvSaExWOXJI2cZJUtLenwy5g42mFiZU+ftrgR8tjHf6yqKgt/aiXTdPpNqr/oWbRIFsHDJvX9SQmOwzFPx5iyjZGnJSEjGzNGWh5fv49KxIUKtwqqiM/b13LF01W1b64OXuLVkK1kpaYZL5gnMXRxJC3k8rC09NBrzZzy5JJy5wcOjl2ly/nuanP+e2H0BpNw0TsPfWuNAYo5jMDE0Bus8x2DOMkqWlvSEZCwcbJ762l1XTeC1c9+QnpTK7a1FO8zxv8S2rAMPc+yz+LAY7PLsMzuNA/Ghj8s8DI3BtqyuzLaPVtJp0gDeP7qITpNfZff89dmvW6tjI06u2mOALMBG40Bi6ON6IjEsBps8edhoHEgMiymwjFVpO5Ij4gBIjojDqrTu5t/55btxqOLKm6cX8+quuRyY8TMoCvbuLqTFJ9Nl6Wj6b5tFy8n9c/V4FTYrFwcSc+yDpLAYrF0K+GyF5q7f83623Ls0IupiINr0TMz0o2Iavd+X3ttn0X7JKCxLF/1NT2uNAwnPUE8kFFBP/O22ikL31RN5eetMag/If65ybVKdlKiHPDTCOdpW40h8jvNYfNjjz1B2mbIOxOc4PuNDY7DVX6Q7urtQsXENXt/0EYPXT8WlnodhAn8CC40jqbmum2Iw1zxjg0gIqs8YxI0Zq4ooun/OVuOQa/8kPGH/JOTYPwmhMdjmOG5bvf8Sw499Sa2ezTn82W/53qNePx/uGriRbKNxICE0d15PqxcLKgNQ95XW2fHf2HaSjOQ0RpxezLDjX3D6u22kPkwqoiyKH0M1GhVFyQTeAXYCV4FfFEW5LIT4WAjRvajyK3aNRkVRhgMhgC/wOVAPaAs0Az4UQrgCA4CdiqJ4AvWBAKME+wzMy9jjuXgk58csKfa9IAXxHNebK9/vIDM5fwNqe6+Z/NlpKnsGfkqN19pTtkl1I0T479xbu5+UkGh8d86i3seDiDl9EyVLoVTtSti4lSVk+3PdjCkWLNw0WFUtxwmvYZzwHIZ9yzrYNalp7LAK3ZaB81nh/Q5qM5Ps3knJ+BoPbM+2mT/zafNRbJv5M70+eQuALh8OZue8tdl33F80j6Ku1KYuUVfu8YP3O6zpNAWfjwdjZmOJykSFa6PqHJq9hnXdPqRURWdqvdTaqDE/jUO1cjSZ1I9DE3XPPKvUKmxcnQg7c4ONnacSfuYWTacNMHKU/95vfWbyi/9U/hz8KXWHtMc1z7mqao9mRullLAwqExUW9tb81HM6e+asoc83o4wd0r9WYagfUX+dIy3HTZCS4NCnv7Kk2WiubDpKgyEdcq2r2Kwm9V5pw/6564wU3fNp8k53tJlarv6uG2qs8fRAm6VlSaNRfN9iLN7/86dURWcjR1kyKYqyTVGUaoqiVFYUZbZ+2YeKomwuoKzP8/YywosxEc4fiqKkAClCiH3oppk9BfwkhDAFNimKElAUb5waFoulq1P27xauTqSGxf7NFrmZ2FjSaPUErs9dT9yZW0UR4jNJDovF2vXxnT5rF0eS8+TxqExyaAxCrcLMzoq02EScvarg1qUx3lP6YWZnhaJVyErL4Nry3dmvkRodz/3tZyjtWZnwE9cNlldqaO79Y+niSEqek82jMin6vExtrUiPSQDg4vTHdzPb/DmDxDuhlG5WE/v6HnQ89SUqtQrz0qVotXEqh3ob5zm0tNAYzF0fPw9g5uL0zCdUJ//GxJ+5iTZZ92xm7N5z2HlXI/5E0T+blFdSWCw2OY5BGxdHkvIcg4/KJIXpj0Fbq2ceEpeVlkHgrrO4+zUgSD8sUPrnmgzqgHd/XU9M8Pk7lMqxz+w0jsTn2WfxYbHY5ej5LuXiSIJ+GKpXn9bZk+Jc2nqCnvP+B0C5eu68skh3YWvlYEs1H0+0WVqu7iq8GzX1Brenjj6P8At3sHF5XE/YaBxJzJNHYljs4+FVecokR8VjVcZe18tYxj77+cRaL7Xh9Le64ZsP74UT/yASh8ouJIbGEHnlHvH3IwG4vesMGq8qsP5AoeWXU3JoLDY59oG1xpGk0AI+Wy6OJOWo3x99tqxdHPH7YQz7xiwh/l4EAKmxiWQkp3J3m26f3Nlyghr92hRJ/HnjtH2GesK2gHri77Z99G9KdDx3dpyhrGdlQvTnKqFWUblTI9b7Tyvq9LJ5D+6AVz/d8Rly4Q52Oc5jdprHn6FHEsJjsctxfNq5OGb3bMWHxnBth24/hZy/g6JVsHK0JVl/njO01LAYLHJdNzmSFvZs5yx776rYN6lBhdf8UFubozIzISs5lZuzDDuxj9fg9tTT758w/f55NEbH9gn7xzbH/rF1cSShgGvFK5uO0nf5eI58rhu55VyjAh0/eZMNQz4lNa7oh397Dm5Pvf6P87LNUS/aPkO9mLdM7b6tqNzOi1/6z81eVrNHcwIPXECbmUVydDzBp2+gqefBQ319WNI9YShpiVHsehoLkPd2tKIoykGgNbqHPpcLIQYXxRs/PHcbaw8NlhWdEaZqXHs2I3znmWfaVpiqabh8LEG/HsqeUdVYogLuYOeuwaaCMypTNe49mvJg19lcZR7sOkuVl3SjfN26NCb0iG4Gve29Z7Kh6XtsaPoeV37YyYVFm7m2fDcmluaYWFsAYGJpjmubOsRdDzJoXrEBt7Hx0GCl3z/lezYjdFfu/RO66wwVX9blVa5rEyKP6J5jVFuaobYyB6BM6zoomVkk3Ajm7oo9bPd8m52NRnOgx0ck3Ak1WoMRICHgFhYeLphXLIMwNcG5Zwtidj3bZA1pwVGUalYL1CqEiZpSzWqTfMOw++iRiPN3KOWmwVZ/DFbp3pS7u3Mfg4G7z1Kjr25fVe7SmOAjVwp6qWwmVubZz6YJtYpK7TyJvRVaJPH/V5z4eTdf+0/ma//JXNl1Gs/euv1R3qsKaQkpJOZ5JjYxMo60hBTKe1UBwLN3K67qP4PxEbG4N9X1bHs0r020fujfwlZjWNhyNAtbjuby9hP8OW1ZoTYYAS6s3MOazlNY03kKt3eeoWaflgBovCqTlpCcPdz0keSIONITU9B46Z6Bq9mnJXf0edzZfZZa+uOyVt9W3N6tW54QEkUFfc+2VWk7HCq78PB+BOHn72BuZ4Wlo+7Z1QrNaxNThMPCI87foZR7js9Wj6bcy/PZurf7LNX09btHl8aE6D9bZnZWdF4xjpNz1xN++maebc7h2ky3/8q1rE2sAYa2h+epJ6oWUE/czVFPVOnSmCB9Lnd3n6Vq96aozEywreBMKTcN4QG3MbE0xzTHuapC6zpE5zhXVWhVh9jbISQ9Y8OmMJxeuZvv/Sfzvf9kru86Tb0++nOUVxVSE1JIzHN8JkbEkZaYQjn956xen1bc0B+H13edwU2/nxzdNahNTYzWYASIP3cbqxzXTZqezYl4xuumiyMXc6jhOxxqNIobH60m5JdDBm8wApxbuYcV/lNY4T+Fm7vOUFtff7jo64+kPPsnSV9/uOjrj9p9WnJLv38c3Mpml6vq14CY27pzlK2rEz2XjmHre0uI1c9/UdQCVu5hZecprOw8hVs7/2Ve+nrRrU09Go/oyu9vfJbrme2EkGgq6ifcM7U0x7VBFaJvhRggO8kQXoSexh5CiLmANeADTBRCVAKCFEX5XghhDjQAVv7Na/wrSpaWS5OW03jdJN3U0Wv3k3g9iGoT+hJ3/i4RO89QytODhsvGYmpvTVm/BlR7/yUOtnkf1+7NcGxaA1MHG8q/ohuadOHdJcRfvlfYYT5THsenrqDDmgkIlYpb6w8QdyMYz/F9iD5/lwe7z3Jz3QFafTWc3ocXkhaXyIGRi//2NS2c7Wj74xgAhFrN3U1HCTbwmHwlS0vA5OW0WDsRoVZxb+1+Eq4HU3NCX+IC7hC66yyBa/bjvXgkfsc+Iz0uiZPDFgFgXtqOFmsnomgVUsNiOTXqW4PG/syytNye/AN11k5FqFWEr91L8vUgKk14hYSA28TsOo2NZ2Vq/TQBE3trHDt4U/H9Vzjb5j2i/jyOfYs6NNz3GaAQszeAmN3PdvIubEqWlkPTVtBt1QTd1wKsP0DsjWAajetD5IW7BO4+y9V1B2j3xXBePbSQ1LhEdr/9+BgcePRzzGwtUZua4N7Rmz9fnUdqbCL+P41FbWYCKkHw0atcXvWXUfJ7Vu9Pn8epcxeIi4unXc+BjHxjEH26dTR2WAW6sS+Aar6ejD3wOekpaWx8f2n2ure3zeFr/8kAbJ72E30WDNd95cb+89zYHwDAHxN/wH/6YFQmKjLTMvhj0g/GSIPAvQG4+dZnyKGFZKaks3v8d9nrBmyfzZrOuq9Y2Dd1OR0WvoWJhRn39p0nUD9b9Olv/sT/21HUfqUN8cFRbBuhq0NOfrWJDguH8equuSDg8Nz12b13h2evpffaSSAEERfvcmntviLLT8nScnjaCvxX6+r36/rPlvf4PkSev8u93We5tu4Avl8Op5++ft+jr99rv9YBO7eyNBjTiwZjdLM6bh3wCanR8ZyYs462X47A7KOBpEYnsH/sd38XRqHlcnDaCnro64kr6w8QcyOYxuP6EKGvJ66sO0CHL4Yz8JAul536eiLmRjA3t5zg1b2foM3UckD/9TtWznb4fz8G0J2rbvxxlPs5zlVVuzc16tDUW3sDqOLrydsHPyNT/5Ubj/xv2xy+13/Otk9dRnf9Vx/c3n+eW/rjM+CX/XT/9C2G7ZpHVkYmm8cZ96t8lCwt1yYto8G6yQi1iuC1+0i6HkTlCS8Rf/4OkTvPYOfpgeeycZjaW+Ps14DK7/flaJv3jRr3k9zZG4CHb33+d1BXf2zPUX8M2TabFf66+mP31OV01tcfd/ef545+/7Se+AqOHi4oWoX44Ch26b9CpMXoXlg62NBh5msAKFlZrOxmuFno7+wNwN23Pm8eWkhGSjo7cuQ1ePtsVurrxT0589p3nrv6vNrNHILazISXVk8EIOTcLfZMXsa5FbvptPAtXtszDyEEl345SNS1B/kDKKmUont+vTgQxfG5Ev30sN7oHvL0AKoCpYH5+obiEOB9IANIBAYrinI3z8soW8v2p6TpEr6W5eUGGjuMQvda8Co2al7cZ2YK0jtsDYc0fY0dRqFrFbaBbyqUvGNw5INVZETdMXYYhcq0tAdT3UrW5wpgVuAavqxY8o7B0fdXsbR8yctrWNAqFpewOuOdB6uYWelVY4dR6KbdW82usv2eXvAF4xe+jvmVStYxOOHeKhaUwHpw/P1VL2zLK6y1T5E0qjQH9xeLv0mx7GnUTw8LMOMJ61cAKwwVjyRJkiRJkiRJ0n9VsWw0SpIkSZIkSZIkvSgUbbHoECwyL8JEOJIkSZIkSZIkSZKRyJ5GSZIkSZIkSZKk51DSv3JDNholSZIkSZIkSZKeg1LCZ0+Vw1MlSZIkSZIkSZKkJ5I9jZIkSZIkSZIkSc+hpA9PlT2NkiRJkiRJkiRJ0hPJnkZJkiRJkiRJkqTnIL9yQ5IkSZIkSZIkSfrPkj2NkiRJkiRJkiRJz0FRjB1B0RJKyc2wxCYmSZIkSZIkSSXQCzvG816D9kXS9qh0dk+x+JuU6J7GsW79jB1CofsscB0zK71q7DAK3bR7q1lWbqCxwyhUQ4NXMd6tv7HDKHQLAtcy0u1lY4dR6L4J/IWpbgOMHUahmhW4hoyoO8YOo9CZlvYocfUF6OqMGSWwfp9xb3WJO29Nu7eaDS4lKyeAvqGrS+wx+HnFklVnvHd/FTvKlrzr3E7h64wdgvQEJbrRKEmSJEmSJEmSVNTkRDiSJEmSJEmSJEnSf5bsaZQkSZIkSZIkSXoOJXeaGB3ZaJQkSZIkSZIkSXoOcniqJEmSJEmSJEmS9J8lexolSZIkSZIkSZKeg6LInkZJkiRJkiRJkiTpP0r2NEqSJEmSJEmSJD0HRWvsCIqWbDRKkiRJkiRJkiQ9B20JH54qG43PoNf0IdT09SI9JY21478l+HJgvjKdx7+Cd+/WWJWyZlLt17KXt3nDnyb92qLNzCIxJoH1E5YQGxxluOBz6DhjMFV865ORks7m8UsJuxSYr4ymjhs9Fg7HxMKUW/vOs3PGSgBaj+mNV39fkqMTANj36Xpu7TuPykRN10/exKWOOyoTFRd+O8yRbzYbLKdyPvVo8vEghErFjbX7ufj1n7nWq8xMaP3lcJzqupMWm8D+EYtJDHr897d2daLX/k8IWLiRS0u3ZS8XKkG37TNJDotlz5CFBsvnSXpMH0JNX0/SU9JZ/4RjsNP4l/Hu3RrLUtZMqT00e7lH4xp0/3AwLjUqsnrUV1zYftKAkT/ZS9OHUtvXi4yUNFaO/4YHl+/mK9N9fD+a9G6NZSkbxtYenL28ad829Jo0iLjwGAAOrNjB0fV7DRZ7Xl2mD6aarycZKen8Nn4JoQXsH9c67vReMAxTCzNu7Atg60e6z5amViV6zH4dE3NTtJlaNk9bRvD529nblavnwVsbP+KXUYu4XEz2XU5T53zGwSMncXSwZ9OqJcYO56lKap3RecZgqurr903jlxJaQP3uUseNnguHY2phys1959mur9/7Lh5FaQ8XACzsrEiNT2aJ/2Qs7W14ecloytXzIGDDQbZ9uMKQKQFFdN4yVdNlzhu41vNA0WrZ+dHP3Dt+1WA5lfWth+fHgxBqFXfX7Of64vzHYKOvRuBQz4302ESOD1tEclAUwlRNw/lv4FBfF/f5aT8TeUwXd8s1E7AoY48wURN14jrnJi0DrWHn/y+KY9CjZR3aT+yH2tSErIxMds9Zw92jVwyZFj4fDcLd15OMlDR2jfuOiALyKlPXjY4Lh2FiYcbdfQHsn/4zAFW7NKbZe71xrOLK2u7TCb+gO89VbFWHlhNfyc7r0Oy1PDBwXo+U9q1PzVlDQK0iaPVe7i7KfQ3n0LQGNWYOwbZWRc4P+4rwLSdyrVfbWNLq0ALCt5/m6uRlhgxdMjCjPdMohBgjhLAy1vs/q5o+npR2d2GOzxh+nfw9fWe/WWC5K3+d4YseU/ItD74SyOfdJrOg8wdc2H6CrpNeLeqQC1TFtz6O7hq+bjOOrZN+xH/W0ALL+c9+nS0Tf+DrNuNwdNdQ2ad+9roTP27ne//JfO8/mVv7zgNQq0sTTMxMWdpxIt93mUqDAW0pVb60QXISKkHT2UPYNXA+v/tOwKNnU0pVdc1Vplp/H9IeJvFby3Fc/n4H3lP65VrfeMarBOlzyanWm52IuxlSpPE/qxo+nji7a5jn8x4bJn9Pn9lvFFjuyl9n+bLH1HzLY0OiWD9+Cef+OFLUoT6z2j5elHHXMMPnXVZP/o5+T/hcXfjrDJ/0mFzgujNbjjLXfwJz/ScYtcFYzccTJ3cNn/uMZdPkH+g++/UCy3Wf9TqbJv3A5z5jcXLXUFX/2eo0sT97v9zI1/6T+euzDXSa1D97G6ESdJzYn1uHLhokl3+jp38Hlnw2y9hhPJOSWmdU1dfvX7UZx5+TfqTLE+r3rrNf58+JP/CVvn6voj8GN7yziCX+k1niP5krO05xdccpADLTMti34Fd2zV5jsFxyKqrzVoP+bQFY2nEiqwbOo8PUV0EYqIdAJfCa8xqHX53PzjYTqNCzGbbVyuUq4tbfh/SHSexoPo4b322n7lRdneDxqi7u3W0ncuiVedSb8Tju428tYk/7yez2+QBzJ1vKd2timHz0iuoYTI5NYO3rC/i240Q2jV1Cr89HGCwnADff+ti7aVjWehx7Jv5I29mvFViu3eyh7P7gB5a1Hoe9mwY3n3oARF8P4s+3viToxPVc5VNiEvjj9YX87DeJne8tpdMXw4s6lYKpBLXmvc7pAfM43GocLr1aYJ3neEwNjubi6G8J3VjwNUTViS8Tc/yaIaIt9hRFFMlPcVFojUah809ebwxQ7BuNdfy8Ob3xIAD3zt3C0tYKW2f7fOXunbtFQmRcvuW3jl0hIzVdX+Ym9hrHogz3iap1aMiF3w4BEHzuFhZ2VtiUsc9VxqaMPeY2lgSfuwXAhd8OUd2v4d++rqIomFqZI9QqTC3MyMrIJC0hpUhyyKu0V2USAsNJvB+JNiOLO38cp2LH3PFW9GvArV91eQduPYlLy9qP13VsSML9SOKuB+faxsrFkfLtPLm5dn+R5/Asavs15PRGXQ73z93C4gnH4P0nHIOxQVGEXruPUoy+dbaenzcn9J+rwHM3sbK1xq6AnALP3SS+gJyKk5p+DQnQ758g/f6xyZOLjbM95raWBOk/WwEbD1HLzxsABTC3sQTAws6S+PDY7O2avtaRy9tPkhT9sOgT+Ze8PetSys7W2GE8k5JaZ1Tv0JDzv+U4Bv+mfn90DJ7/7RA1Cqjfa3dpwsXNRwHISEnj/ukbZKZlFG0CT1BU563SVcsRqO/VSY6OJzU+Cdd67oWfQAEcvSqTGBhO0v1IlIwsHvxxHNc8x6Brp4bc+0VXPwZvOUmZVrpj0LZaOSKO6OJOi44n42ESDvV1cWcm6s67wkSNytREV7EYUFEdg2GX75EQEQdAxI0gTC3MUJsZbpBcZb+GXP3tsC6Wc7cxt7PGOk9e1mXsMbOxJOycboTI1d8OU7mjrn6PuRVC7J3QfK8befkeSeFxAETfCMLEwHk9Yt+gCsl3w0i5F4GSkUXYpqOU7eSdq0zKg0gSr9wvsOfarp475s6liN5/wVAhS0b0XI1GIYSbEOK6EGIlcAmYJoQ4JYS4IIT4SF/GWgixVQhxXghxSQjxihDiXcAV2CeE2Kcv5yeEOCaEOCuE+FUIYaNf3kgIcVS//UkhhK0QwkoI8YsQ4ooQ4nchxAkhhPeT4nwedmUdiQuJzv49LiyGUv+y4dfkZV+u7g8opMj+GVuNI/E58ogPi8G2rEPuMmUdiA+LeVwmNAbbHLk2GuzHWzvm0u3T/2Fhp2vvX912kozkNN479TXvHvuSY99tJfVhUhFno2OlcSAp5HG8yaExWGscnlhGydKSHp+MuYMNJlbm1H27KwGfbcz3uk0+GsjpWWtRDDy050lK5TkGHz7HMVhc2Jd1JDbk8ZC/2LDof3xDxatzE6Zs/5Q3vxmLg4tTYYf4zGzLOvAwx3EYHxaDXZ7j0E7jQHzo4zIPQx9//rZ9tJJOkwbw/tFFdJr8Krvnr89+3VodG3Fy1R4DZPHfUFLrDLsC6ne7PPW7XQH1u12ez1ylxjVIinpITGB40Qb8jIrqvBV+5R7VOjRAqFXYV3DGpY47dq6GqUMsNY6kBD/OKSU0Bss8x6ClxoGUHMdgRnwyZo42PLxyD1c/XdxWFZyxr+eOVbnHcbdc+wHdLn5LZmIqQXmGEBY1QxyDtfwbE3opkKz0zEKO/slsNA4khD7OKzEsBps8+8tG40BijrwKKvN3qvo3IsLAeT1irnEkJcd+Sw2JwfxZz8VCUGPGIK7NWFVE0b14FK0okp/iojB6GqsC3wDvAeWAxoAn0FAI0RroBIQoilJfUZQ6wA5FUb4CQgBfRVF8hRClgalAe0VRGgCngbFCCDNgPTBaUZT6QHsgBRgJxCqKUguYBvz9bcVioGHPllSo58G+7/58euFi6MyqPSxu/R7fdZ5MYkQcHabphtm6elZGq9XyReN3WNTyPZr9zx/7Cs5GjvbpvMb15vL3O8hMTsu1vHx7T1Ki4om+GGicwKRncnHPGaa1fJvZnd/n2uELDF74trFD+tcaD2zPtpk/82nzUWyb+TO9PnkLgC4fDmbnvLXFqof4v+y/UGfU6d6Mi5uPGTuMQvOk81bALweID43hzT9n4ffhIB6cvYmSVfynPQxce4CU0Bja7ZiF58eDiD6dO+7D/T9hi+fbqMxNKJOjh/xF8qRj0LlqOdpP7Mefk340QlRFx6laOVpO6seeST8ZO5R/rOJQPyL/OkdajhuiUslWGH3h9xRFOS6EWAD4Aef0y23QNSgPAQuFEJ8AWxRFOVTAazQFagFHhG58vhlwDKgOhCqKcgpAUZR4ACFES+BL/bJLQohC7RdvMciPpvpnHh6cv419jjuQ9hpHHob9sw9I1RZ1aP9OL75+5SOD3knyHtwBr36+AIRcuJPrTqqdxpGEHMPgABLCY3Pd9bNzcSRBn2tSVHz28rNr99Hvp/EA1OnRnNv7L6DNzCI5Op4HZ27gWs+DuAeRRZbXI8lhsVi7Po7XysWRpLDYAsskh8Yg1CrM7KxIi02ktFcVKnVpjPeUfpjZWYFWISstAyuNAxX9GlC+bX3U5qaY2VrS+qsRHHz32yLPJ6fmgzrQJPsYvJPrGCz1L47B4qD1oI606N8OgHvnb+PgWhrQPefhoHEi7h/klBSXmP3/I+v+otfEgYUa69M0GdQB7/66z1bw+TuUynEc2mkcic9zHMaHxWLn8rhMKZfHnz+vPq2zJ8W5tPUEPef9D4By9dx5ZdEoAKwcbKnm44k2S8vVXaeLLrESriTVGY0Gd6Chvn4PLqB+j89Tv8cXUL/n7PVRqVXU7NSI77rmfy7akAxx3lKytOye+bh35LWN04m+G1b4yRQgJSwGyxy9g5YujqTkOQZTwmKxdHUkRX8MmtpZkR6jq/POT38ct+/m6STcyR23Ni2DkJ1ncO3YkIiDl4owE8Mdg3YaR/p99x6/j11C7P2Iokgll/qD21NHX7+HX7iDbY6RLDYaRxLz7K/EsFhscuRVUJmC2Ggc6fbdGHa+t4SH94o+r4KkhcVgmWO/Wbg6kvaM52J776o4NKlBxdf8UFubozIzISs5lRuz1hZVuMVeSb/HWxiNxkdjEQUwV1GUpXkLCCEaAP7ALCHEX4qifJy3CLBbUZT+ebarWwjx/WNHft7FkZ93AVDT14uWQzpybvNRKnlVITUhucDnxp6kXG03XprzP74bMpfE6Pinb1CITq/czemVuwGo0taTRkP8uLz5GOW8qpCakEKi/jmBRxIj4khLTKGcVxWCz92iXp9WnFq+E9A9i/CofI2O3kReDwIgPjgKt+a1uPj7YUwtzSnnVZUTP+4wSH5RAXewc9dgU8GZ5LAYPHo05cDb3+Qqc3/XWaq81IrIM7dw69KYUP3zINt7z8wu4zm2N5lJqVxdrvtbnZn3CwCaZjWpM9zf4A1GgKM/7+boz7p4avp60WKIHwGbj1LxXxyDxcXBn3dy8Gfd8VTH14s2QzpxevMR3LyqkpKQ/I+eXbRzts8uX6+DN2G3g4og4ic78fNuTuj3TzVfT5oO8ePC5mOU96pCWkIKiXlySYyMIy0hhfJeVQg6dwvP3q04vlxXx8RHxOLetCZ3j1/Fo3ltovXDsha2GpO9fe8Fw7j+1znZYHxOJanOOLVyN6f09XvVtp40HuLHpZzH4BPq90fHYP0+rTipr98BPFrWIep2SK6LeGMwxHnLxMIMIQQZKWm4t6yDNlNL1M3cz6kWldiAO9i4a7Cq4ExKWAwVejTl5Mivc5UJ3XmWSi+3JubMLcp1bUzE4csAqC3NAEFWShplWtdBm6Ul4UYwaitzTG0sSY2IQ6hVuLTzIupE0U9MYohj0MLOigHLxrPnk3U8OH2jyHMCOL9yD+dX6h4LcG/rSf0hHbi++Rgar8qkJySTlCevpIg40hNT0HhVJuzcbWr2aUmAvn5/EnM7K3ouH8fheesJOX2zqFJ5qofnbmPlocGyojOpoTFoejbnwohFz7TthZGLs/9f7pU22NX3+E83GIFiNZS0KBTmU7c7gZlCiNWKoiQKIcoBGfr3iFEUZZUQIg54NE1iAmALRAHHga+FEFUURbklhLBGN9T1OuAihGikKMopIYQtuuGpR4CX0T0TWQsossbl1X3nqOnryeQDX5KRksba9x9PKT9u2zwW+k8EoOvEATTo0QJTSzM+PPY1J9bvY+cXG+g26VXMrcwZ8s0YAGKDo/jpfwuKKtwnurU3gCq+nrx98DMy9VOXP/K/bXP43l83Q+X2qcvorp82+vb+89mzzbWb1B9NrUooisLDoEi2TtYNpTi1cjfdFwxj+O5PQAjO/3qAiGsPDJKTkqXl+NQV+K2ZgFCpuLn+AHE3gvEa34eo83d5sPssN9cdoNVXw+lzeCFpcYnsz1HJvSiu7jtHDV9PJh74goyUNNa//3jfvbdtLp/7TwKgy8QBePVojqmlGVOPLebk+n3s+uI3KtTzYMjSsViVsqZWuwb4vfcSC/zeN1Y6AFzad47avg346MBXpKek8/P7jy/cJ22bz1z/CQD0mvgq3j1aYmZpxuxj33J0/V62fvErvkM7U7e9N9qsLJLjElk5/psnvVWRu7EvgGq+now98DnpKWlszLF/3t42h6/1n63N036iz4Lhuq/c2H+eG/rnm/+Y+AP+0wejMlGRmZbBH5N+MEYa/9r70+dx6twF4uLiaddzICPfGESfbh2NHVaBSmqdcXNvAFV9PXn34GdkpKTzR476ffi2OSzRH4Nbpy6jp75+v7X/PDdzzAJbp1szLhUwLHDM4S8wt7VEbWpCDT9vfh40j0gDNbCK6rxlXdqOV1d+gKIoxIfF8sd7hrsxqGRpCZi8nFZrP0CoVQSuO0D8jWBqvd+H2PN3Cd11lrtr99N40Qg6HV1IelwSJ4brLuLNnexotVYXd0poLKdG6eI2sTKn+YqxqMxMESpB5JEr3Fn5l8FygqI7BhsP8cPRrSxt3u1Nm3d7A/DzoHkkGegm/N29Abj51mfooYVkpqSza/x32ete3T6b1Z11s+bvnbocv4VvYWJhRuC+8wTq86rc0Rvfjwdj6WhLj2Xjibxyj98Hzaf+kA7Yu5WlyeheNBndC4CNAz8hxcCdC0qWliuTluG9bjJCrSJo7T4SrwdRZcJLPDx/h8idZ7Dz9KDBsnGY2Fvj7NeAKu/35Ugb415DSMYhnud5GSGEG7ohp3X0v4/mcaMwERgIVAE+BbToGpEjFEU5LYQYBbyD7nlHXyFEW+ATwFy//VRFUTYLIRoBiwBLdA3G9ujmBVuBbkjrNcADeElRlJy3a5SxbrmnSi8JPgtcx8xKxvnajqI07d5qlpUz7BDDojY0eBXj3fo/veALZkHgWka6vWzsMArdN4G/MNVtgLHDKFSzAteQEXXH2GEUOtPSHiWuvgBdnTGjBNbvM+6tLnHnrWn3VrPBpWTlBNA3dHWJPQY/r1iy6oz37q9iR9mSd53bKXzdC9tdd8mja5EMUK1zZ0ux+Js8V0+joiiBQJ0cv3+J/lnDHG6j64XMu+0idI3BR7/vBRoVUO4Uumceswkh1MBARVFShRCVgT3AvX+diCRJkiRJkiRJklQgw38pTOGwQjc01RTd85AjFUVJN3JMkiRJkiRJkiT9BylKsegQLDIvZKNRUZQEoEi+l1GSJEmSJEmSJOmfKOmzpxbG9zRKkiRJkiRJkiRJJdQL2dMoSZIkSZIkSZJUXGhL+PBU2dMoSZIkSZIkSZIkPZHsaZQkSZIkSZIkSXoOciIcSZIkSZIkSZIk6YnkRDiSJEmSJEmSJEnSf5bsaZQkSZIkSZIkSXoOciIcSZIkSZIkSZIk6T9LKCV3AG6JTUySJEmSJEmSSqAXtrvuVLleRdL2aBT8e76/iRCiE/AloAZ+UBRlXp71Y4E3gUwgEnhdUZR7zxNHiR6eWqdsU2OHUOguhR9nbqWBxg6j0E26t4rbdToaO4xCVfnSzhK7r76sWPLyGn2/5OU1+v4qlpUrWTkBDA1eRUbUHWOHUehMS3vgpWlh7DAK3bmwIzR19TF2GIXqeMh+Iju0MXYYhc559wEGVOpl7DAK3Zp7vzPJbYCxwyhUcwPXENOr5B2Djr8fMHYIxZ4QQg18DXQAgoBTQojNiqJcyVHsHOCtKEqyEGIEMB945XneVw5PlSRJkiRJkiRJeg5aRRTJTwEaA7cURbmjKEo6sA7okbOAoij7FEVJ1v96HCj/vPnJRqMkSZIkSZIkSdJzUIropwDlgAc5fg/SL3uSN4Dt/yannEr08FRJkiRJkiRJkqT/IiHEQMAbeO6xzLLRKEmSJEmSJEmS9BwM+JUbwUCFHL+X1y/LRQjRHpgCtFEUJe1531QOT5UkSZIkSZIkSXoxnAKqCiHchRBmQD9gc84CQggvYCnQXVGUiMJ4U9nTKEmSJEmSJEmS9BwUA/U0KoqSKYR4B9iJ7is3flIU5bIQ4mPgtKIom4FPARvgVyEEwH1FUbo/z/vKRqMkSZIkSZIkSdJz0BrwvRRF2QZsy7Pswxz/b1/Y7ymHp0qSJEmSJEmSJElPJHsaJUmSJEmSJEmSnoOCwSbCMQrZaPyHJs0eS6t2zUhNSWPKuzO5evH6E8suWvkp5Su50qvNqwaM8Mk6zBhEZV9PMlLS2DL+O8IvBeYro6njRpeFwzC1MOP2vgB2z/g51/rG/+tMu6mv8oXncFJiE7OXu9TzYPDv09k0ajHXt50q6lSeyrKFN6UnDkeo1cT/tp24H3/Jtd7u5S7Y9esGWi3a5BQiZ3xJxp37Roq2YEWxv5oM60LtHs0BUJmocKpSji+9RpD6MKnI8mjz0SDcfD3JTElj17jviCwgjzJ13eiwcBgmFmYE7gvgwHRdHualrPH/5h3syjsTHxTJtpGLSHuYjHkpK9p/+hb2lcqQmZbBnvHfE30jCADP1ztSu78PQggurd1HwI87X5i8zGwt6fjlCGxdnVCZqDm7dBtXfj0IgK2rE+3mv4mtiyMK8MeQT0kIiiqS3ADK+dSjyceDECoVN9bu5+LXf+ZarzIzofWXw3Gq605abAL7RywmMUc81q5O9Nr/CQELN3Jp6eMRNEIl6LZ9JslhsewZsrDI4n9eU+d8xsEjJ3F0sGfTqiXGDucfmTBrDC3aNSM1JZXpo2dz7eKNfGUWr1mIc1kn1CYmnDt+nrmTFqLVaqlWuypT5r+PubkZWVlZzJm4gMvnrhohi/zGzhxFs7ZNSUtJZeZ787h+8Wa+Mp+vnk/pMo6oTdQEnLjIgslfoNU+HjQ2YNjLvDt9JB3r9OBhzENDhl8gU+/G2IwchVCpSNm+lZT1a3Ktt+jaHcvuvUCbhZKSQsLnC8i6fw9MTLAdMx6TatVBqyXxm0VkXAgwThIFGDzjDTx9G5KeksaS8YsIvHQn13ozCzNGf/s+ZStq0Gq1nN1zmnWf6OrHGo1rMWj661Ss4caiUQs5ue2YMVLI1m36YKr7epKeks6G8UsIuRyYr4xrHXdeWqA7F1/fF8CfH60EQFOzIr1mv4GZlTmxQVGsH/M1aYkpunU1KtBrzpuY21iiaLV83WMamWkZhkwNAFOvxli9MQpUKtL2bCV145qCyzVtje0HM3k4/i2ybl/HpL43VoPeAhNTyMwgecW3ZF48Z+DoJUP62+GpQgh7IcRI/f99hBBb/smLCyGWCyH6/tOg/u69hBCBQojS//Q1C0Ords2o6F4B/6YvMWP8XKbNn/DEsu39fUhOSjZgdH+vsm99HNw1LGkzju2TfqTTrNcKLNdx9lC2T/yBJW3G4eCuwcOnXvY6WxdH3FvV5WGeC1WhEvhMeoW7hy4WZQrPTqXCeerbhI6Yyv3u/8PG3xdTj4q5iiRs3UdQ7+EE9R1J3E+/UnrCMCMFW7Ci2l8nlm7lJ/8p/OQ/hf2f/ML9E1eLtMHo5lsfezcNK1qP46+JP9J2dsF5+M4eyl8f/MCK1uOwd9NQSZ+H99vdeHDkCivajOfBkSt4j+wGQKO3exB15R6rO05m13tLaPPRIACcqpWndn8f1nebzuqOk3Fv50WpSmVfmLzqD+5AzM1g1nSawm8vz6bVtAGoTNUA+H0+nLNLt/Jzuw9Y3+1DUqLiCz2vR4RK0HT2EHYNnM/vvhPw6NmUUlVdc5Wp1t+HtIdJ/NZyHJe/34H3lH651jee8SpB+87ne+1ab3Yi7mZIkcVeWHr6d2DJZ7OMHcY/1rJdMyp6lKdHs1eYNX4+kz8ZX2C5D96axivtXqNvm4E4ONnToZsvAGOmjeS7hT/Rr/1rfDv/B8ZMG2nI8J+oWdsmVHAvz0stXmXuhIVMmPtegeWmDJvBoA5vMsB3KA5OpWjbzSd7XRlXZxq38SY0KMxAUT+FSoXtqDE8nDyBmDeHYOHbDnXFSrmKpO3dQ+xbQ4kd/ibJv6zFZvjbAFj4dwUg9q2hxE0ch/WwkSCKRy+Hp28DNO6ujG0zkh8mfcvrswo+v2797g/GtxvFJP9xVPOuQX2fBgBEhUSyZNwijv5x0JBhF6i6jydO7hoW+Izl98k/0HP26wWW6znrdTZO+oEFPmNxctdQzac+AH3m/Y8dn6zly04TubzzFK3f0u03lVrFy5+/ze9TfuQLvwl8328WWRmZBssrm0qF1VtjSJg5gYfvDsGsZTtU5SvlL2dhiUXXvmRev5y9SIl/SMLsScSPGUrSV3OxGT3FgIEXT1qlaH6Ki6c902gPFI8zRjHg26k1m3/V3TG/cOYytnY2lC7jlK+cpZUlg4f3Z+nnywwd4hNV7dCQS78dBiDk3G3M7ayxLmOfq4x1GXvMbSwJOXcbgEu/Haaan3f2+vYfDmTf3HUoSu4j2Ps1P65vP0VSEV7E/hPmdauTcT+EzKAwyMwkcft+rNs2y1VGydGgV1lagFKMPpUU7f56pFaPZlz5o2jv4Hr4NeSqPo8wfR5WefKwKmOPmY0lYfo8rv52mModdXlU7tCQKxsOAXBlwyEq6/NzrFqOB0evABB7OxTb8qWxKm2HQ1VXws/dJjM1HSVLS/Dxa1Tp7E1hK6q8FBTMrC0BMLW2IDUuCW2mFseqrqhMVNw/dAmAjOQ0MlPTCz2vR0p7VSYhMJzE+5FoM7K488dxKnZsmKtMRb8G3PpVl0Pg1pO4tKz9eF3HhiTcjyTueu6vjbJycaR8O09urt1fZLEXFm/PupSyszV2GP9Ym44t2fLLDgAunr2MrZ1tgeeppERdHWhiosbEzIRHtYSiKFjbWgNgY2tNZFjR9Wb/E607tmDbBt2ogctnr2BTyganMo75yiXr81KbqDE1M81Vt4+Z8Q6LZy2FYlLdm1SvSVZIMNqwUMjMJHX/Xsyat8xVRkl+fK4SFpbZsZtUciM94KyuTFwcSlKirtexGGjYoTGHftsHwK1zN7Cys8a+jEOuMump6Vw5pqvPsjIyCbx0B0eN7jiNCorkwbV7aIvB1XJNv4ac26ir5x6cu4WFrRW2zva5ytg622Nua8mDc7cAOLfxELX0dXppdxfunrgGwK3DF6nduREAVVvVI+zafcKu6kY4JcclohghX5OqNdGGBqMN1x2D6Yf3Yta4Zb5yVgPeIPX3NSgZj887WXdvosRG6/5//y6Ymet6Hf/DtIgi+SkuntZonAdUFkIEoJ+6VQixQQhxTQixWujncBVCfCiEOCWEuCSE+O7R8pyeVEYIUUUIsUcIcV4IcVYIUVm/SYHvpTdKX/aiEKLGc/8VnlFZF2fCgh9/1Ul4aARlXZzzlRs18S1WfLuG1JTn/h7NQmOrcSA+JDr794SwGGzL5q7Ebcs6EB8Wk/17fGgMthpdmaodGpAQFkvE1dxDOG3KOlCtozdnf/6rCKP/Z0zKOJEZFpn9e2Z4FCZl8ndO2/XrRsXty3Aa9yZRc78xZIhPVVT76xETCzM82tTj+vaiHUpso3EgMfRxHolhMdhoHPKXyZFHzjJWpe1IjogDIDkiDqvSdgBEXb1PlU66k3LZ+h7YlSuNjYsj0deDcG1cHQt7G0wszHDzrY+NS/4L5uKa1/nlu3Go4sqbpxfz6q65HJjxMygK9u4upMUn02XpaPpvm0XLyf0RqqI7kVhpHEgKeRx7cmgM1nnyy1lGydKSHp+MuYMNJlbm1H27KwGfbcz3uk0+GsjpWWuNcnH0X1HGxZmwkNznqTIFnKcAvl77GX9d2kJyYjJ7/tRd5C/48EvGTBvJ9jMbeW/6OyyaUzyG5jprnIkIeVyvR4RE4qwpOK8v1sxn+4VNJCUms3fLAQBadWxBZFgkt67cNki8z0JVujRZkY/3lTYqEnXp/Ocqi+49cVyxBus3h5P4zZcAZN6+jXmzFqBSo9JoMKlaDZVzGYPF/nccNE7E5Dh/xYRF41A2fwP/ESs7Kxq09+bykQuGCO8fKVXWgbgcdeHDsBjs8tSFdhoH4kNzlAmNoZT+fB1+Myi7AVnXvyn2+vNRaQ8NKApDV07knS2zaT2sa1GnUiDhWJqsqBzHYHQkKqfcx6Daoyqq0mXIOHP8ia9j2qwNWXduQKbhh9dKhvO0RuNE4LaiKJ7A+4AXMAaoBXgALfTlFiuK0khRlDqAJVDQ0f+kMquBrxVFqQ80B0L1y5/0XgBRiqI0AL4FCh57YyTVa1elglt5/tp+wNihFBoTCzOav92dQ59tyLeu/fSB7Ju3rtj11D2L+HV/cr/zUKI/+xGHYQOMHU6h+bv99UjV9l4Enb5RpENTi8Kjo+z0N39ibmfNgO2zqT/Uj8jL99BmaYm9FcKZb7fQc/UH9Px5ApFX7qFoDTkJ9r/zKK9KbeoSdeUeP3i/w5pOU/D5eDBmNpaoTFS4NqrOodlrWNftQ0pVdKbWS62NGvOTeI3rzeXvd5CZnPumWfn2nqRExRN9MdA4gUn5vN1/LB3q98DMzIxGLXU9yS8N6cXC6Yvo3LA3C6Z/xfTPJhk5yn9uzIAJdPXqg5mZKd4tvTC3NOe1Ua/y3afFZ/TPP5G6eRMxQwaQ9MNSrAYM1i3bsY2syAgcvlmKzYhRZFy5DC9AXZeXSq3inUXj2LFsKxEPwo0dTqH7bcJ3NB3Ynnf+nI25jUX2EFSVWk2lRtVZP/prlvb9iNodG1G5ee2nvJoRCIHV0LdJXvbkG+vqCm5YDR5G0pLi+4y6oSiIIvkpLv7pRDgnFUUJAtD3ProBhwFfIcQEwApwBC4Df+bZNl8ZIcR+oJyiKL8DKIqSqn/tv3svgEe3sM8Avf9hDv9Iv6F96DuwBwCXAq6iKff4Tl5ZlzKEh0bmKu/pXZfa9Wuw89TvqE3UOJV2YNnGbxja2/CjfBsMbo9nP91zKqEX7mDn+rjHxVbjSEJ4bK7yCeGx2Gke3w20c3EkISwWh0plKFXBmde3z8lePnTrLFb0mI5LPXd6LHoHACtHWyr71kebqeXmrjNFnd4TZUZEY5LjDrRJ2dJkRjx5iFXi9v2UnjbKEKH9LUPsr6RI3cQPNbs148rmohmaWm9we+r01+URfuFOrp4+G40jiWG580gMi8UmRx45yyRHxWNVxl7XG1fGPvs5vvTEFHaP/y57m6FHPif+vu6zeHn9AS6v1920aT7hZRJz3AEu7nnVeqkNp7/VVZ0P74UT/yASh8ouJIbGEHnlXnaOt3edQeNVBdYXzc2p5LBYrF0fx27l4khSnvwelUkOjUGoVZjZWZEWm0hprypU6tIY7yn9MLOzAq1CVloGVhoHKvo1oHzb+qjNTTGztaT1VyM4+O63RZLDf8nLQ3vT+1XddzZfDriKxjX3eSoiz3kqp/S0dPbvPIRPp1acOHiKri93Zv7ULwDYvXkvHy6cWKSx/50+r/Wkx6u6+8tXA65RxvVxvV7G1ZnIsL/P6+DOI7Tq2JLoiBhcKrqwas+PADi7OLNi53e87j+CmMjCqR/+DW1UFOocvYOq0s5kRT35XJW2/y9sRr+nG/elzSJpydc8uu1n/8XXZAU9KNqA/0aHwZ3x7dcBgDsXbuGY4/zlqHEiNrzgv/Ob80YSdjeEHT/9oykzilTTQR1opK/rg87fwd7VkXv6daU0jsTnqQvjw2Kxc3lcX5ZyceSh/nwdeTuEnwbPA6C0u4bqvl6Arscy8OQ1kmMTALi+LwDXOu7cPnoZQ1JiolCXznEMOjmjjX58DApLK9QV3bGd9YVuvb0jtpPnkDBnMlm3ryOcnLGZOIukL+egDSv+z6pLz+efNhpz3jrOAkyEEBbAN4C3oigPhBAzAIucGz1LmWd5rwLW5V1e6NYt+411y34DoHX75vR//SW2/76beg1rk5iQSFREdK7y61dsZP0KXZvWtYILX69aYJQGI8DZlXs4u3IPAJXbetJwSAeubD6Gq1dl0hKSSdIPj3skKSKOtMQUXL0qE3LuNnX6tOTM8l1EXg/iq4ZvZ5cbcfhzlnebRkpsIt+2HJu9vMuCt7i195xRG4wAaZeuY1qxHCblypIZHo1NZx/CJ8zLVca0oisZ93UVnFXrxmTcDy7opQzKEPsLwNzWkopNa/DnmKK5WL+wcg8X9Hm4tfWk/pAO3Nh8DI0+j+Q8eSRHxJGemILGqzJh525Ts09Lzi/fBcCd3Wep1bcVp7/5k1p9W3F7t+7YMrOzIjMlDW1GFrX7+xB88hrp+hnpLJ3sSImOx9bVicqdvFnfc8YLk1dCSBQVWtQm5OR13TOalV14eD+CtIdJmNtZYeloS0pMAhWa1yb8Qu7ZCAtTVMAd7Nw12FRwJjksBo8eTTnwdu47zfd3naXKS62IPHMLty6NCT2ie8Z0e++Z2WU8x/YmMymVq8t3A3Bmnm4WY02zmtQZ7i8bjIXkl2Ub+WWZ7rzTsn0z+r3ehx2b9lC3QcHnKUsrS6xtrIiKiEatVtOyfXPOndBNWhQZFkXD5l6cOXqOxi0bcv+O8Roivy3fxG/LNwHQvF1TXhrai92b9lK7QS0S45OIjsjdELG0ssTKxpLoiBjUajUt2jcl4MRFbl+7i3+9Xtnlfj+xjtc6DzP67KmZ16+hLlcelUaDNioKC5+2xM+dmauMulw5soJ15yezJs3ICtbNEo25uW7im9RUTBt4o2Rl6WZVNZLdK7eze+V2ADzbNsRviD/HNh+milc1UhKSiYuIzbfNS+MHYGVrxfcTvjZ0uH/r+M+7Of6zrs6q7utJsyF+nN98jApeVUhNSCEhMi5X+YTIONISUqjgVYUH527h1bsVx/R1vbWTHUnR8Qgh8H2nFydW684hNw5coPWwrphamJGVkYl7k5oc/jHX97QbRObNa6hcyqMqo0EbE4VZy7Ykff74GFSSk4gb0iP7d9uZX5C8/Ftdg9HKBtsp80j+eSmZ1y4ZPPbi6MXr6/9nntbgSgCeNhPAo8ZflBDCBugL5B0XV2AZRVEShBBBQoieiqJsEkKYA+p/EL9BHdxzlFbtmrP9xAZSUlKZNvrxzHob/lpJ33aDjRjd37u9N4DKvvUZfnAhGSnpbM3RS/P6ttn85K+b9Wrn1OV0XfgWJhZm3Nl/ntsFzH5Y7GVpiZrzNS5L5yDUKuJ/30XG7Xs4vD2YtMs3SN5/HLsB3bFq2gAlMxNtfCIRkxcYO+pcinJ/Vevozd2DF8kwwDO3gXsDcPOtz5BDC8lMSc/VOzhg+2zWdNblsW/qcjro87i37zyB+jxOf/Mn/t+OovYrbYgPjmLbiEUAOFZxxe+zYaBA9I0g9kz4Pvt1uywdjYWDDdqMTPZPW0F6fOHPYlxUeZ38ahMdFg7j1V1zQcDhuetJ1Tf2D89eS++1k0AIIi7e5dLafYWe1yNKlpbjU1fgt2YCQqXi5voDxN0Ixmt8H6LO3+XB7rPcXHeAVl8Np8/hhaTFJbJ/5OIii8cY3p8+j1PnLhAXF0+7ngMZ+cYg+nTraOywnurwnmO0bNeMzcd/ITUllRlj5mSvW7dnOf3av4allQVfrPwEUzNTVCoVp4+cZcOKTQDMHP8J788cjYmJmrS0dGa9P99ImeR29K/jNG/XhA1HV5Oaksas9z7JXrdy9w8M7vAmllYWfLp8DmZmpgiVirNHz/H7ys1GjPoptFkkLv6CUnMXIFQqUnduI+teIFZDXifzxjXSjx3FokdvzLwaQlYm2oREEubPBUBl70CpuZ+CoqCNiiThk9lGTuaxgL1n8PRtyOcHvyUtJY2l4xdlr5uz7TMm+4/FUeNEr1EvEXwriNlbdcMad63cxv51e/CoV4X3vvsA61I2NGjfiL7v9WNCh9FGyeX6vgCq+3oy/sDnZKSkseH9pdnrRm2bwyL/yQD8Me0n+i4YjqmFGTf2n+f6/gAA6ndvTrNBuh7YSztPceZX3eiQ1PgkDv+wjbc3z0JRFK7vC+D6vgCD5gaANovk77/AdvoC3Vdu/LWNrAeBWPZ/ncxb18g4dfSJm5r790LtUg7Ll4dg+fIQABI+Go/yMM5AwUuGJp40s2J2ASHWAPWAFCBcUZSu+uWLgdOKoiwXQswC+gNhwA3gnqIoM4QQy4EtiqJs+JsyVYGlQGkgA3gJqAiMf8J7BaLrsYwSQngDCxRF8SkgdKVO2ab/+g9TXF0KP87cSgONHUahm3RvFbfrFP8Lsn+i8qWdJXZffVmx5OU1+n7Jy2v0/VUsK1eycgIYGryKjKii62k1FtPSHnhpWjy94AvmXNgRmrr6GDuMQnU8ZD+RHdoYO4xC57z7AAMq9Xp6wRfMmnu/M8mt5MxdADA3cA0xvUreMej4+4Hi8xDfP7SrbL8imeDDL3xdsfibPHVop6IoBX7KFEV5J8f/pwJTCyjz2jOUuQm0zbP4DrD/Ce/lluP/pwGfp+UgSZIkSZIkSZJUVEr68NSnzZ4qSZIkSZIkSZIk/YcV6SQykiRJkiRJkiRJJZ3saZQkSZIkSZIkSZL+s2RPoyRJkiRJkiRJ0nNQKBbz1RQZ2WiUJEmSJEmSJEl6DtqS3WaUw1MlSZIkSZIkSZKkJ5M9jZIkSZIkSZIkSc9BW8KHp8qeRkmSJEmSJEmSJOmJZE+jJEmSJEmSJEnSc1CMHUARk41GSZIkSZIkSZKk51DSv6dRKEqJbReX2MQkSZIkSZIkqQR6YR8M3KgZUCRtj95ha4rF36RE9zRu1AwwdgiFrnfYGnaV7WfsMAqdX/g66pRtauwwCtWl8OOsdh1o7DAK3ashq0psXkvLl6y8hgWtYkalV40dRqGbcW81XpoWxg6j0J0LO0JG1B1jh1HoTEt7cKtWR2OHUaiqXNlJt4pdjR1Gofvz/hb+1PQ3dhiFrlvYWk6V62XsMApVo+Df8SjtZewwCt2dqHPGDuFf04pi0bYrMnIiHEmSJEmSJEmSJOmJSnRPoyRJkiRJkiRJUlEr6c/FyZ5GSZIkSZIkSZIk6YlkT6MkSZIkSZIkSdJzKOmzp8pGoyRJkiRJkiRJ0nPQlux5cOTwVEmSJEmSJEmSJOnJZE+jJEmSJEmSJEnSc9C+uF8x+UxkT6MkSZIkSZIkSZL0RLKnUZIkSZIkSZIk6TmU9K/ckI3GApT1rUe9mYMRahWBq/dxY/GfudarzEzwXjQC+3rupMcmcnLYVyQ/iEKYqmnw6ZvY13dH0SpcmLaSqKNXMbG2oPUfH2Zvb+nixIPfDnPhw58NnRoATr71qTFrCEKtImj1XgIXbc613qFpDarPHIJNrYpcHPYV4VtO5FqvtrGkxaEFRGw/zbXJywwZ+lNNmj2WVu2akZqSxpR3Z3L14vV8ZZas/RznsqVRq9WcPRHArIkL0Gq1VK9VhWmffoCVtSUhD8L4YMSHJCUmGyELcPGph/fMQQiViltr93OlgGOw+VfDcazrTlpsAoeHLyYpKAoA+5oVaPzJ65jaWoJWYbv/h2jTMqjUsxl1RnVHURRSwuM4Ouob0mISX9icVCZqOmyalr29lYsjgb8d4cz0VQbLCaCCTz2afzQIoVZxbe1+Ar7On1fbL4ZTup47qbEJ7BmxmMSgKMq1qkOTSa+gMjNBm57J8VlrCTl6RbeNqZqWs4bg0qwmilbh1PxfubvtlEHzAug8YzBVfeuTkZLOpvFLCb0UmK+MSx03ei4cjqmFKTf3nWf7jJUA9F08itIeLgBY2FmRGp/MEv/JWNrb8PKS0ZSr50HAhoNs+3CFIVPKZ8KsMbRo14zUlFSmj57NtYs38pVZvGYhzmWdUJuYcO74eeZOWohWq6Va7apMmf8+5uZmZGVlMWfiAi6fu2qELJ7d1DmfcfDISRwd7Nm0aomxw3lmVi29KT1pOKjVxG/YTtwPv+Rabz+kN3Z9O6FkZpEV+5CIqZ+RGRIBgNPYN7Bq0xiA2G/XkLjjgMHj/ztvffQWDX29SUtJ48txX3D70u1c680tzPng24m4VNKg1Wo5ueckK+Y9/ty07NqS/u8NAEXh7pW7LHh3gaFTyMXZtz519NdQ91fv49bi3NcYjk1rUOfjwdjWqsjZ4V8RuuUkAHa1K1H3k9cxtbVCydJy88vfCfnjuDFSKJCdjxcVP34DoVIRuXYPYV9vzLW+7Fvdce7fHiUzi8yYeO6OXUx6cCQA1VZNw7pBdRJPXeXmkNnGCP9vfThnAj7tW5Caksr7o6Zz+cK1J5b9btUXVKhUjs6tXsq1/I2Rg5jy8VgaVvMlNiauiCMunkr6RDiy0ZiXSlB/7lAOvzyXlNBofHfMInTXWRJuBGcXcRvgQ3pcEruajaV8j2bUmdqfk8MW4T6wLQB/+U7EvLQdzVd/wL5OU8lMSmVv+8nZ2/vunE2wES4AAVAJas57nTMvzyY1JJqmO+cQufMMSTnySwmO5tLob3Eb0bXAl6gy8WVijz+5QjGWVu2aUdG9Av5NX6Jew9pMmz+BAZ3fyFdu3P+mZDcGP/9xLh27t2X7pj189NlkFny0iNPHztGrf1eGvj2QxZ98Z+g0ECpBozlD2NtvHsmhMXTa9jFBO88QfzMku0zl/rpjcHOLcVTq0RSvqf04PHwxQq2i+aIRHH13CXFX7mPmYIOSkYlQq/D+eCBbfD4gLSYRr6n9qDbUj4sLN/5NJMU7p8y0DLZ3mJK9facdM3lg4M+VUAlazBrC1gHzSAqNoffWjwncdYa4HHnV6OdD2sMk1rUcR+XuTWk6uR97Ri4mNSaBHUMXkhweh0P18nRZPYFV3u8C0ODdHqRExbO+9fsgBBb21gbNC6Cqb30c3TV81WYc5b2q0GXWUH7oOT1fua6zX+fPiT8QdO4Wr66YQBWf+tzaf54N7yzKLuM39VXS4nWfucy0DPYt+JUy1StQpnp5g+VTkJbtmlHRozw9mr1C3Qa1mfzJeAb7v5Wv3AdvTcuuMxb8MJsO3XzZ+cdfjJk2ku8W/sSRvcdp2a4ZY6aN5H+9Rxk6jX+kp38HBvTpzuSZxm1Y/CMqFc5T3yb4zUlkhkdRYf0ikvYdJ+P2/ewiaVdv8+ClUSipadi90hWncW8SPm4OVq0bY16rCg96j0CYmVJu+ackHTqFkmScG4J5NfT1xtXNlWGt36K6V3VGzB7J+B7j8pX7/buNXDx2ERNTE2atnU1Dn4ac2X8GFzdX+o58iQm93yfpYRKlnEoZIYscVIK6c4dy/OU5pIRG02rHbMJ2nSEx1zVGFOdGL6HyyC65Ns1KSSNg1Lck3Q3DvKwDrXfNJmLfBTLji8G+UqmoNPstbvSfQXpoNLW2zSdu10lSbwZlF0m+dIcrncejTU3HeXBHKkwdzO0RCwEIXbIJlaU5ZQZ2NFYGT+TTviVuHhVp27gHng3rMvPTyfTuOLjAsh27tCW5gM+Oi2tZWvk0JfhBaFGHKxmRfKYxD0evKiTdDSf5fgRKRhZBm47h0rFhrjIuHb25/8shAIK3nMC5ZR0AbKuVI+LwZQDSouLJiE/CwdMj17Y2HhrMS9sRbaRGV6kGVUi+G0bKPV1+YZuOUqaTd64yqQ8iSbxyH0Wbv6Pdtp47Zs6liN5/wVAhPzPfTq3Z/Os2AC6cuYytnQ2lyzjlK/fo4s/ERI2pmSmKPs1KlSty+tg5AI4dOEmHLr6GCTwPJ6/KJASGk3g/Em1GFvf+OE6FPMdg+Y4NuPOr7hi8v+UkZVvWBsClTV3irj4g7oruYio9NlG3H4UAITCxNAfA1MaSlLDYFzunHGw9NFiUtiPiRP6e5aJUxrMy8YHhJOjzuvXHcdz8cufl5teAG/q87mw9ias+r+jL90gOjwMg9noQagszVGa6+3jVX2nDuUc9sYpCaqzheoQfqd6hIed/08UddO4WFnZW2JSxz1XGpow95jaWBJ27BcD53w5RI0/+ALW7NOHi5qMAZKSkcf/0DTLTMoo2gWfQpmNLtvyyA4CLZy9ja2f71DrDxMwkewiSoihY2+oa9Da21kSGRRkk7ufh7VmXUna2xg7jH7GoW52M+yFkBoVBRiaJ2/dj07ZZrjIpJ8+jpKYBkHrhKiZlSwNgVqUiKacvQpYWJSWN9Bt3sW7lne89jKWpXxP2/rYXgOvnrmNtZ41DGYdcZdJS07h47CIAmRmZ3L50GycXXX4dB3Rk28qtJD1MAuBh9EMDRp+fg1cVku6GZV9DhWw6hqZj7r93yoMoEq7ehzz1eNKdMJLuhgGQFh5LWlQ85k52Bov971h7VSUtMJS0++EoGZnE/HEYh46Nc5VJOHoJbWo6AElnbmDq8rguSTh8EW1iikFjflbtO7fh91+2ABBw5iJ2pWxx1n9+crKytuSNEQNZvPCHfOumzhrPvI++RFFK+gDNv6ctop/iwuCNRiHEQCHESSFEgBBiqRCiiRDighDCQghhLYS4LISoI4TwEULsF0JsEEJcE0KsFkII/Wv465edEUJ8JYTYUljxWbg4kBISnf17SmgMli6OTyyjZGnJSEjGzNGWh5fv49KxIUKtwqqiM/b13LF0zb1t+Z7NCNp8rLDC/ccsNI6k5sgvNSQGc43j32yRgxBUnzGIGzMMO/zvWZV1cSYsOCL79/DQCMq6OBdYdum6LzhweTtJiUns+lN3wr59/Q5tO7cGwK9bOzTlyhR90AWw1DiQHBKT/XtyaAyWLrkvIqw0DiTpyyhZWjLikzF3tMHWQwOKgu+aCXTeOYta+ju5SmYWJycuo8veefQ+t5hS1cpxe+3+FzqnnCr1aMq9zYYfxmTl4kBi6OO8ksJisM6Tl7XmcRklS0t6fDIWDja5yrh3aUTUxUC06ZmY2VkB0Oj9vvTePov2S0ZhWdrwF052Gkfic9QV8WEx2JXNnZtdWQfiwx7nHx8ag12e+qRS4xokRT0kJjC8aAP+F8q4OBMWkrvOKPOEOuPrtZ/x16UtJCcms+fPfQAs+PBLxkwbyfYzG3lv+jssmvPiDPd8kajLOpERFpn9e2ZYFOoy+S9qH7Hr3YnkQ7pRB2nX7mDV0hthYY7K3g7LxvUx0RS8j43BSeNEVOjjmw3RYdE4afLfuHjE2s6axu0bc/5IAADl3F1x9SjHJxvn8+mmBTRo06CoQ/5bea+hUkOjschTJz4Le6/KqExNSCom9YaZxpH0kMf7KT00GtO/2U+l+7fn4b6zhgjtuWlcyhAaHJb9e1hIOBqX/Nc/YyeN5IdvfiYlJXfjt31nH8JCI7h2Of/QfqlkMWijUQhRE3gFaKEoiieQBVQHNgOzgPnAKkVRLuk38QLGALUAD6CFEMICWAp0VhSlIVBsav97a/eTEhKN785Z1Pt4EDGnb6Jk5b7rUr5nM4J+N16j8XlUGOpH1F/nSMtxkfyiGtZvDL71umJmZkaTlrq7oNPGzKbfa31Yv2s51jZWZKRnGjnKf05losa5cTWOvvMNu3p+TPlO3pRtWRthoqba4PZs85vCRq93iL16n9qjuhs73GfypJxycuvRjHsv6OfKoVo5mkzqx6GJPwGgUquwcXUi7MwNNnaeSviZWzSdNsDIUf57dbo346IRb5QVlrf7j6VD/R6YmZnRqKWuN/WlIb1YOH0RnRv2ZsH0r5j+2SQjRynZdGuLRZ2qxP60AYCUo2dJPnSK8ms+R7NgEqnnr6JkFad7989OpVbx/qL3+XPZZsLv6xpTahM1rm6uTH55EgtGfco7n4zC2s7ww9kLk3kZe7wWjSRgzBJ4AXuunHq3wbp+ZcK+3WTsUApNzTrVqOhWgV3b9uVabmFpwcgxr/PFvG+NFFnxohTRT3Fh6Gca2wENgVP6TkNLIAL4GDgFpALv5ih/UlGUIAAhRADgBiQCdxRFuasvsxbI/xDKv5QaGoul6+O7R5YujqTkaSQ9KpMSGoNQqzC1tSI9JgGAizkm4Wjz5wwS7zwe312qVkWEWk3chbsYS2pYDBY58rNwdSQt7NkagfbeVbFvUoMKr/mhtjZHZWZCVnIqN2etLapwn6rf0D70HdgDgEsBV3P1DpZ1KUN4aOSTNiU9LZ19Ow7i26kVxw6e5O6te7z1ymgAKnlUoHWH5kUb/BOkhMVilaOH2srFkZTQ3ENJk8NisXZ1fHwM2lmRFpNIcmgMEcevZ09wE7L3PI513chI0N0ZTLyn61W5v/kEtd7pZqCMiiancP1QcPtaFRFqFTEXAw2WT3bMobHY5BiJYK1xJClPXklhujJJ+rzM7Kyyh5tauzji98MY9o1ZQrx+36TGJpKRnMrdbacBuLPlBDX6tTFIPo0Gd6BhP92w7OALd7DLUVfYaRyJD8+dW3x4bK6eRTsXx1w9jyq1ipqdGvFd16lFHPmze3lob3q/qrthcjngKhrX3HVGxFPqjP07D+HTqRUnDp6i68udmT/1CwB2b97LhwsnFmns/1VZ4dGY5ugdNNGUJisi/1Bgy2ZeOL7Vn+Ah4yHj8fDn2KVriV2qO0+VnT+RjHtB+bY1JP/BXejYX/ds280LNynt8rjX1EnjRHRYdIHbvTNvFCGBIWz+8fHEMlGh0Vw/d52szCzCH4QTcjcEVzdXbl64WbRJPEHeaygLFydS89SJf8fExpImqyZwbd564s7eKooQ/5X0sBjMXB/vJzMXJzIK2E92rerh8m5frvWZilKMbzwPev1lXhnUG4ALAZdxKafJXqdxLUtYaESu8g0a1aeuZy0Ont2K2kSNU2lH1vzxPR9N/ITyFcux9cB6/bZl+HPvGnr6DSIqouDjuCQr6RPhGHp4qgBWKIriqf+prijKDMAJsAFsAYsc5dNy/D8LAzRyYwNuY+OhwaqiM8JUTfmezQjddSZXmdBdZ6j4cisAynVtQuQR3cWr2tIMtZXumbEyreugZGblmkCnfK/mBG06WtQp/K34c7ex8tBgqc9P07M5ETvPPH1D4OLIxRxq+A6HGo3ixkerCfnlkFEbjADrlv1G33aD6dtuMHu3H6D7S/4A1GtYm8SExHyVlqWVZfYzS2q1mtYdWnD31j0AHEvrhtAIIRj23lB+WfG7ATN5LDrgDrbuGqwrOKMyVVOpR1OCduUe5hK86yweL+mOwYpdGxN+WDfrZuj+C9jXrIDa0gyhVlGmWQ0e3ggmJSyGUtXKYe6oe5ZJ07purkloXsScHnHr2YzAP4zTkxVx/g6l3DXY6vOq0qMp93bnzuve7rNU0+fl0aUxIUd0eZnZWdF5xThOzl1P+OmbebY5h2uzmgCUa1mb2JvBGMKplbtZ4j+ZJf6TubbrNPX76OIu71WFtIQUEiPicpVPjIgjLTGF8l5VAKjfpxXXdz+uTzxa1iHqdkiuhqSx/bJsI/3av0a/9q+xb8dBur7cCYC6DZ6tzmjZvjmB+jojMiyKhs29AGjcsiH37zwwYCb/HamXrmNaqRwm5cqCqQk2nX1I2pd7OLpZzcqUmf4uoe9MJysmx3N9KhWqUrp6z6yaO2bV3Uk+8mznvKKybeVWRnd+l9Gd3+X4zmO07aObRK+6V3WSE5KJjcjfyBo4fiDWtlZ8P+P7XMuP7zxG3WZ1AbBzsMPV3ZWw+2H5tjeUuIDbWOe4xnDt2YywXc/29xamaryXjeXBr4eyZ1QtLpICbmLu7oJZhTIIUxMce7QkdlfuidesartTad4Ibg6dQ6aRny19mp9/+oWuvv3o6tuP3dv20etl3cSHng3rkhCfSGR47psyq5f9SrM6frRu0IWXuwzl7u17DOjxP65fvUXjmu1o3aALrRt0ISwkgm5tB/wnG4z/BYbuafwL+EMI8bmiKBFCCEd0DcVFwDTAHfgEeOdvXuM64CGEcFMUJRDdcNdCo2RpCZi8nBZrJyLUKu6t3U/C9WBqTuhLXMAdQnedJXDNfrwXj8Tv2GekxyVxcphulkDz0na0WDsRRauQGhbLqVG5u+vLd2/KkVfnF2a4/5iSpeXapGU0WDcZoVYRvHYfSdeDqDzhJeLP3yFy5xnsPD3wXDYOU3trnP0aUPn9vhxt875R434WB/ccpVW75mw/sYGUlFSmjZ6VvW7DXyvp224wVtaWLF75KWbmZgiV4OSRs9mNQ/9eHeg3tC8Ae7bt5/e1hfao7D+iZGk5PWUFbddMQKhV3F53gIc3gqn3fh+iz98leNdZbq09QPOvhtP9yELS4hI5MmIxAOkPk7m6dDudtn0MikLI3vOE/BUAwMXPNtLh96loM7JICo7i2BjDzQxbVDkBVOzWhP2DPjVYLnnzOjxtBf6rJyBUKq6vP0DsjWC8x/ch8vxd7u0+y7V1B/D9cjj9Duvy2jNSl1ft1zpg51aWBmN60WBMLwC2DviE1Oh4TsxZR9svR2D20UBSoxPYP9bws/je3BtAVV9P3j34GRkp6fwxfmn2uuHb5rDEXzcj9Napy+i5cBgmFmbc2n+em/vOZ5er060ZlwoYmjrm8BeY21qiNjWhhp83Pw+aR6SBGsY5Hd5zjJbtmrH5+C+kpqQyY8yc7HXr9iynX/vXsLSy4IuVn2BqZopKpeL0kbNsWLEJgJnjP+H9maMxMVGTlpbOrPeNW78/i/enz+PUuQvExcXTrudARr4xiD7dit+MjrlkaYmc/TWu389BqFTE/76L9Fv3cHxnMKmXb5C87zilx/8PYWWJ5nNdr3ZmSASh78xAmKgpv0o3g6U2MZnwDz6BYjQ89fTe03j7evPdoe91X7kx/ovsdV9u/4rRnd/FSePEK+/248HNB3yx7UsAtq7Ywq51uzh74CxerRvw9V/foM3Ssmz2MhLiEoyUja5OvDR5OU3XTkKoVTxYu5/E60FUn9CXuIC7hO86QylPDxr9NBZTe2vKdmhA9fdfYn+b93Ht3gynpjUwc7Chwiu6+QUCRi8h/vI9o+WTLUvL/anfU33NdFCpiFr/F6k3HuA6vj/J528Rt/sU5acNQW1tQZWluuultOBIbg2dC0CNjbOxqFIOtZUF9U9/z91xXxN/IMCICT22b/dhfNq3ZN+pzaSmpDLh3RnZ67bsW0dX337GC+4FU3xqlqIhDD3TkRDiFWASul7ODOAPoL6iKH2EEGrgqH69FhivKEpX/XaLgdOKoiwXQnQDPgWS0A1rtVUU5dU8b6Vs1Ly4zwE9Se+wNewqW/I+wH7h66hTtqmxwyhUl8KPs9p1oLHDKHSvhqwqsXktLV+y8hoWtIoZlfJWjS++GfdW46VpYewwCt25sCNkRN0xdhiFzrS0B7dqFfOG6T9U5cpOulUs+GupXmR/3t/Cn5r+xg6j0HULW8upcr2MHUahahT8Ox6lvYwdRqG7E3XuhR3k+X35gUXSqPpf0Kpi8Tcx+Pc0KoqyHlj/hHVZQJMci/bnWJez93Gfoig19LOpfg2cLoJQJUmSJEmSJEmSnqqk9zS+qN/T+D/9xDiXgVLoZlOVJEmSJEmSJEmSCpnBexoLg6IonwOfGzsOSZIkSZIkSZIkpVgMIi06L2SjUZIkSZIkSZIkqbiQw1MlSZIkSZIkSZKkYkEI0UkIcV0IcUsIke9LgoUQ5kKI9fr1J4QQbs/7nrLRKEmSJEmSJEmS9By0RfSTl/7bJr4GOgO1gP5CiFp5ir0BxCqKUgXdI32fPG9+stEoSZIkSZIkSZL0YmgM3FIU5Y6iKOnAOqBHnjI9gBX6/28A2um/deJfk41GSZIkSZIkSZKk56AU0U8BygEPcvwepF9WYBlFUTKBh4DT8+QnJ8KRJEmSJEmSJEl6DtoSPnuq7GmUJEmSJEmSJEl6MQQDFXL8Xl6/rMAyQggTdN9rH/08byobjZIkSZIkSZIkSc/BUBPhAKeAqkIIdyGEGdAP2JynzGZgiP7/fYG9iqI8YbTrsxHPuX1xVmITkyRJkiRJkqQS6IUd5Pl5xYFF0vZ47/6qfH8TIYQ/8AWgBn5SFGW2EOJj4LSiKJuFEBbAz4AXEAP0UxTlzvPEUaKfaTxVrpexQyh0jYJ/Z6NmgLHDKHS9w9Yw0u1lY4dRqL4J/IXjrr2NHUahaxqykZXlBho7jEI3OHgViyuUrLzeebCKmZVeNXYYhW7avdU0dfUxdhiF7njIfm7V6mjsMApdlSs7yYh6rmuVYse0tAcmZnnnnXjxZaYHc7ZC3kkYX3wNHvxR4q4JGwX/TuXSDYwdRqG7HXXW2CH8a0/oFSwSiqJsA7blWfZhjv+nAi8V5nuW6EajJEmSJEmSJElSUSvpQxzlM42SJEmSJEmSJEnSE8meRkmSJEmSJEmSpOcgv3JDkiRJkiRJkiRJ+s+SPY2SJEmSJEmSJEnPwZAT4RiD7GmUJEmSJEmSJEmSnkj2NEqSJEmSJEmSJD2Hkj57qmw0SpIkSZIkSZIkPQdtCW82yuGpkiRJkiRJkiRJ0hPJnsansPPxouLHbyBUKiLX7iHs64251pd9qzvO/dujZGaRGRPP3bGLSQ+OBKDaqmlYN6hO4qmr3Bwy2xjhP47Ttx71Zg5GqFUErt7HjcV/5lqvMjPBe9EI7Ou5kx6byMlhX5H8IAphqqbBp29iX98dRatwYdpKoo5eBUCYqvGcM5TSzWuCVuHyvPWEbD1ljPSyvTR9KLV9vchISWPl+G94cPluvjLdx/ejSe/WWJayYWztwdnLm/ZtQ69Jg4gLjwHgwIodHF2/12CxP0kpHy/cZr6OUKmIWLuHkMW/51pv26QWbh+/jlXNStwc8RkxW49lr6s4ZRD27RoCEPzFr0RvPmLQ2HNy9alHo48HIVQqbq3dz6Wv8x+DLb8cjmNdd9JiEzg4YjFJQVFYly9Nj/3zib8TCkDk2VucmLgs17a+y8ZiU9GZP9tNMkguFX3q0WrGIIRaxZW1+zn7Tf5cOnwxHOe67qTGJrBz5GISgqIAaPh2N2r280HJ0nJo+kruH7gIwOCjn5ORlIo2S4uSlcUvXT4EoOM372Dv4QKAuZ0VafHJrO80xSB5dpwxmCq+9clISWfz+KWEXQrMV0ZTx40eC4djYmHKrX3n2TljJQCtx/TGq78vydEJAOz7dD239p1HZaqmy5w3cK3ngaLVsvOjn7l3/KpB8inI2JmjaNa2KWkpqcx8bx7XL97MV+bz1fMpXcYRtYmagBMXWTD5C7Tax1MeDBj2Mu9OH0nHOj14GPPQkOHnY9XSm9KThoNaTfyG7cT98Euu9fZDemPXtxNKZhZZsQ+JmPoZmSERADiNfQOrNo0BiP12DYk7Dhg8/n9j6pzPOHjkJI4O9mxatcTY4fxjn3/2MZ07tSU5JYU33niPcwGX8pX5a/evaFzKkpKSCkBn//5ERkZToYIry378klL2dqjVKqZMmcv2HcY9b9n5eFF+xv9ArSJ67W7Cv/kt1/oy/+uOUz8/yMoiI/oh98cvIj04Esta7lSYMxy1jRVotYQt+pXYPw8bKYv8Ssr1YEE+nPM+Pu1bkpKSyoRR07l84doTyy5d9TkVK5Wjc6uXAXhv4gjad/ZBq9USHRXDhFHTiQiLMlToxUpJnwin0BqNQohERVFsCli+HNiiKMqGQnyv1wBvRVHeKazXLJBKRaXZb3Gj/wzSQ6OptW0+cbtOknozKLtI8qU7XOk8Hm1qOs6DO1Jh6mBuj1gIQOiSTagszSkzsGORhvlUKkH9uUM5/PJcUkKj8d0xi9BdZ0m4EZxdxG2AD+lxSexqNpbyPZpRZ2p/Tg5bhPvAtgD85TsR89J2NF/9Afs6TQVFocaYnqRFPWR3i3EgBGYO+Xa/QdX28aKMu4YZPu/i5lWVfrPf5NOe+S+uL/x1hv0rdjBj/1f51p3ZcpRfpv9kiHCfjUqF+5z/cbXfR6SHRlNn23xid54iJccxmB4cye0xi3AZ3iPXpvbtGmJV14MLHcaiMjOl1m8zidt7lqzEFENngVAJmswewu7+80gOjcF/28c82HWGhzdDsstU7e9D2sMkNrUch1v3pjSc0o+DIxYDkHAvnC1+BTeUKnb2JjMp1SB5gC6XNrOG8MeAeSSGxvDylo+5u/sMsTlyqdXPh7S4JFa1GkfV7k1pPrkfO0cuxqGqK1W7N2VNuw+wLutAz7UTWdV6PIpWN6Tl95dnkxqbmOv9do5cnP3/FtMGkB6fbJA8q/jWx9Fdw9dtxlHOqwr+s4byU8/p+cr5z36dLRN/IPjcLfqvmEBln/rc3n8egBM/buf4d9tylW/QX1enLO04ESsnOwasmMAP3aaBYvhhPc3aNqGCe3leavEqtRvUYsLc93ij68h85aYMm0Fyou7vPvf7j2jbzYc9f+guzMu4OtO4jTehQWEGjb1AKhXOU98m+M1JZIZHUWH9IpL2HSfj9v3sImlXb/PgpVEoqWnYvdIVp3FvEj5uDlatG2NeqwoPeo9AmJlSbvmnJB06hZJkmOPtefT078CAPt2ZPHOBsUP5xzp3akvVKu7UqNWSJo0b8PXiuTRv2a3AsoMHv8OZsxdyLZs8aTS/bviTpd+tpGbNqvz5x89UqdbUEKEXTKWiwqxh3BwwnYzQaKpvWcDD3SdJvfkgu0jypbtEdhmLkppO6UGdKDflNe6O/BRtShr3xnxBWmAopmUdqbF1IfEHzpEVn2S8fB4pKdeDBfBp3wI3j4q0bdwDz4Z1+fjTSfTpOKTAsn5d2pKcp074fvFKPp/3LQBD/tePUePfYtr4OUUet2R4cnjq37D2qkpaYChp98NRMjKJ+eMwDh0b5yqTcPQS2tR0AJLO3MDUxenxusMX0RrhAj0vR68qJN0NJ/l+BEpGFkGbjuHSsWGuMi4dvbn/yyEAgrecwLllHQBsq5Uj4vBlANKi4smIT8LB0wOASv18uL5os+4FFIX0mAQDZVSwen7enNh4EIDAczexsrXGztk+X7nAczeJj4wzbHD/ko1XFVJzHIPRBRyDaUGRJF+9B9rc97gsq5Un4fgVyNKiTUkj+WogpXy9DBl+NievyiQEhpN4PxJtRhaBfxynQp5jsIJfA27/qjsG7209iaZl7ae+romVObXe6syFLzcVRdgFKutZmYeB4cTrc7m5+Tgefrlz8fBrwLUNulxubT1J+Ra19csbcnPzcbTpmSQ8iORhYDhlPSs/83tX6dqEG38ce3rBQlCtQ0Mu/KavE87dwsLOCpsy9rnK2JSxx9zGkuBztwC48Nshquf5W+RVumo5Ao9eASA5Op7U+CRc67kXfgLPoHXHFmzbsBOAy2evYFPKBqcyjvnKPWowqk3UmJqZ5mrgjpnxDotnLS0WMyBY1K1Oxv0QMoPCICOTxO37sWnbLFeZlJPnUVLTAEi9cBWTsqUBMKtSkZTTFyFLi5KSRvqNu1i38jZ4Dv+Gt2ddStnZGjuMf6Vbt478vFp3T/3EybOUsi+FRlPmmbdXFLCz092wLWVnR2hoeJHE+aysPauSFhhGuv6cFbv5EKX8cp+zEo9dRHl03XT2OqYa3XVT2t0Q0gJ1I0oywmPIiH6IiaOdYRN4gpJyPViQ9p19+P2XLQAEnLmIXSlbnPX1Qk5W1pa8MeJVvl74Q67liYmPG/WWVpYoRrgBWFwoRfRTXPyrRqMQYqwQ4pL+Z0yedUIIsVgIcV0IsQcok2NdoBBivhDiohDipBCiin65sxDiNyHEKf1PC/3yxkKIY0KIc0KIo0KI6gXE0kVfJv8R/pzMNI6khzzuYk8Pjc6u3ApSun97Hu47W9hhPDcLFwdSQqKzf08JjcHSxfGJZZQsLRkJyZg52vLw8n1cOjZEqFVYVXTGvp47lq6OmNpZAVBrwku03TWbxt+Pxry0cSt3+7KOxObYX7Fh0dhr8l8A/h2vzk2Ysv1T3vxmLA4uT97XhmKmcSI9x75LD43GzOXZckq+Eoi9rxcqSzNMHG2xa14Hc9dC/5g8EyuNA0khMY9jC43BSuOQq4ylxoFkfRklS0tGfDLm+t5rm4rOdN05C78NUyjT+HE14DmhL5eXbiczJd0AWehYaxxIyJFLYmgM1nlyyVlGydKSnpCMhYPN32+rKHRfPZGXt86k9gDffO/r2qQ6KVEPeRhomItCW40j8TmOvfiwGGzL5s7TtqwD8WGP84kPjcE2x2eu0WA/3toxl26f/g8LfZ0RfuUe1To0QKhV2FdwxqWOO3auxvmsOWuciQiJzP49IiQSZ41zgWW/WDOf7Rc2kZSYzN4tumGbrTq2IDIskltXbhsk3qdRl3UiI+xxPplhUajLPPkzb9e7E8mHdI8UpF27g1VLb4SFOSp7Oywb18fkCX8LqfCUc9UQ9ODxKIXgoFDKuWoKLPvDD59x+tQupkwek73s45kLGTCgN4F3TvPn5pWMHjO1qEP+W6Yap1zXTRlPuW5y6teB+P1n8i238qyKytSEtHvFoAefknM9WJCyLmUICX58XgkLiUDjkv+z/96kkfz4zarsIdI5jZv8NofPb6NH3858oe91/C/SFtFPcfGPG41CiIbAUKAJ0BT4nxAiZ/dFL6A6UAsYDDTP8xIPFUWpCywGvtAv+xL4XFGURkAf4NFtjGtAK0VRvIAPgVz93UKIXsBEwF9RFKMOoHbq3Qbr+pUJ+3aTMcModPfW7iclJBrfnbOo9/EgYk7fRMlSECZqrMo5EX36Bnv9phBz+iZ1p79q7HCfy8U9Z5jW8m1md36fa4cvMHjh28YO6bk8PHCe2L/OUHvzXKp8M5bEMzdQsopT9fNsUiLi2Nh4DFs6TuX0R6tp9fVITG0scahdEdtKZXmw47SxQywUv/WZyS/+U/lz8KfUHdIe1ya575FV7dHMYL2MheHMqj0sbv0e33WeTGJEHB2m6eqHgF8OEB8aw5t/zsLvw0E8OHvzhTguxwyYQFevPpiZmeLd0gtzS3NeG/Uq33267OkbF0M23dpiUacqsT/perlSjp4l+dApyq/5HM2CSaSev/pC7Jf/ikFDRuHVoD0+vr1o2aIxAwf2BaDfKz1ZufJX3Dy86dZ9MMuXf4UQwsjRPhvHXm2wrleF8CW5n9M3KeOA2xfvETjuK6MMW39eJfF6sGadalR0K8+ubfsKXL9wzte0rO/PHxu2M+jNfgaOTjKUf/NMY0vgd0VRkgCEEBuBVjnWtwbWKoqSBYQIIfI+kb02x7+f6//fHqiVo6KzE0LYAKWAFUKIquh6aE1zvE5bwBvwUxQl/l/k8VTpYTGY5eiZMXNxIiMsOl85u1b1cHm3L9f6TEVJzyyKUJ5Lamgsljnu5Fu6OJISGlNgmZTQGIRahamtVfZw04vTV2WXa/PnDBLvhJIek0Bmcmr2xDfBfx7HbYBP0SeTR+tBHWnRvx0A987fxsG1NHAdAAeNE3FhMX+zdW5JcY+fJTuy7i96TRxYqLH+G+lh0Zjl2HdmLk6khz57TiFf/UbIV7pJCKp8PYbUOyFP2aJoJIfFYu36uAfKysWR5LDYXGVSwmKxcnUk+dExaGdFmv75vrR03b8xFwNJCIzAzkODk6cHTvXc6X38c4SJGgsnO/x+ncKul4p2koGksFhsc+Ri4+JIUp5cHpVJCtPlYmZrRWps4t9u++jflOh47uw4Q1nPyoSc0B3LQq2icqdGrPefVqS5eQ/ugFc/XS9nyIU7uXoA7TSOJITnzjMhPBa7HD2Ldi6OJOg/c0lRj6vls2v30e+n8YCu53X3zMd1ymsbpxN913C9CX1e60mPV7sCcDXgGmVcH99RL+PqTGSOnrq80tPSObjzCK06tiQ6IgaXii6s2vMjAM4uzqzY+R2v+48gJvLZP6OFKSs8GtMcvYMmmtJkReS/n2rZzAvHt/oTPGQ8ZGRkL49dupbYpbpTdNn5E8m4F5RvW+n5jRg+hDfe0N1EOX06gPIVXLPXlSvvQnBI/s9DiH5ZYmISa9dtopG3J6tWbWDo0H506ao7Vx0/cQYLc3NKl3YkMjL/tYohZIRF57puMn3CdZNty/poRr3EjZem5LpuUtlYUmX5NELmryL53A2DxPwsSsr14CMDX3+ZVwb1AuBiwGVcy5XlUX+vxrUMYaG560GvRvWo61mLA2e3oDZR41TakdV/fMerPd7KVe6PDdv5ad1XfPnJizchVWHQvhj3a/41YzzTqBTwfxXQVFEUT/1POUVREoGZwD5FUeoA3QCLHNveBmyBakUVaFLATczdXTCrUAZhaoJjj5bE7so9O6hVbXcqzRvBzaFzyIw27qx5TxIbcBsbDw1WFZ0RpmrK92xG6K7cw0FCd52h4su6tn+5rk2IPKJ7jlFtaYbayhyAMq3roGRmZU+gE7rrHM7NawLg3KoO8Tkm1jGUgz/vZK7/BOb6T+DCrpM06d0aADevqqQkJP+jZxdzPv9Yr4M3YbeNf8GUGHALC3cXzPXHoFMBx+ATLC2LhQAAd4hJREFUqVSY6Id3WtWshFVNN+IOBBRdsH8jOuAOtu4abCo4ozJV49ajKQ925R6682DXWSq/pDsGK3VpTNgR3XNv5o62CJWuJrap6Iyde1kS7kdwY+VfbGg4io1N32NHz4+JvxNa5A1GgPDzdyjlpsFWn0vV7k25uzt3Lnd3n6VGX10uVbo0Jkify93dZ6navSkqMxNsKzhTyk1DeMBtTCzNMbXWVW8mluZUaF2H6OuPj78KreoQezuEpH9wE+TfOL1yN9/7T+Z7/8lc33Waen30dYJXFVITUkiMiMtVPjEijrTEFMp5VQGgXp9W3Nitq1tyPv9Yo6M3kfp8TCzMMLXU1SnuLeugzdQSddNwdcdvyzcxuMObDO7wJgd2HMa/r25iitoNapEYn0R0RO6/saWVZfZzjmq1mhbtm/L/9u47PoqiDeD4b+7SG0koKQgkiEiR3ntCJ4p0kS5YUBSRXn1BKWJDFFRQlA5ioSkgHaQKCAHpNZQUSAghvd6+f9yRHookdzE+Xz75cLc7d3me7O7czs7s3NWL17h09goB1bvQpcGLdGnwIuGh4Qxo95rFGowAiSfPYV2uNFalPcDaCqcOfsTtPJiljE3lJyk1+W1C35pMWuaZXnU6dMWM9wXaVPTF5mlf4vflHDYoHt/X8xZTt15b6tZry/r1m+nXx9hr2KB+baLvRhMWditLeb1eT/HixqHhVlZWPPtsa06dMl5Qun4tmJb+TQGoVKkCdna2FmswAsQdv4CtT8Z5k9vzzbi79VCWMvZVfSk78w0uDZqe5bxJWVtR/tvx3P5lJ1Eb95s79PsqKueD9yz7/kc6+veio38vtmzcRZcXjBfSatapRkx0LOE3s15sWrHwZxo/044WtZ+j57ODCLp0Nb3B6FO+THq5Nh1acOlCkNnyEOb1T3oa9wCLlFIzAYVxOGq/TOv/AAYrpRZjvJ/RH1iRaX1PYKbp/3tjrbYAQ4GPAZRSNTVNC8TY03jvbOKlbHFcBUYDq5VSPTRNO/UPcrm/NAPXJn3L0ysmg05HxKrtJJ6/jveoXsQfv0jU1sM88e4A9I52VJg/GoCk4HAuDvwAgEqrp2NXoTR6BztqHPmWKyO/JNoCJ+1amoHACYtosnIcSq/j6spdxJwLpvKY7kQFXiZ0y1GCVuyi7twhtD0wi+SoOA4NngOAbQkXmqwch2bQSAy7w+GhGWPVT05bSb05b1B9an+Sbkfz1zvzzZ5bZid3HqOqf23e2/0FyQnJLB39Vfq68Rs/4oOAMQB0GdeHup2aYmNvw/QDX7N/1Q42zP4J/4EdqNa6Loa0NOKjYlky6qu8fpX5pBkImriASiv+h9LruPXDdhLOX+eJ0S8Sd/wSd7YcxrFGBSp+NxYrV0dc29TjiVE9OeH/DspaT5U1xkZUWkwCF4fOBgsNN9PSDByatJjWK8YYv3Jj1W7ung+mxqhu3D5+hRtbj3Lhh900/eJ1Ou/9lOSoWP4wzRrq0bASNUd1w5CahmbQODh+IclRlptNT0sz8Me7i+m0bIzxKzdW7SbyfDD1R3bj1okrBG09yukfdtNm9uv03fMpSVGxbH7TmEvk+WAu/PYnfXZ8iCHVwO5Ji9AMGg4lXQj49h0AlF7P+XX7ubYrY5bEp55vaPahqRd3BFLBvyZv/jGLVNNXbtzz6sYZfBswAYBNkxby/KeDsbKz4dKu41zcaZw5tdX4XnhWKYemady9Ec6GCcZZiR1LuNBnyVg0TSM67A7rhlvu/pf92w/SuFUDft6/nMSEJKYN/zB93ZKtC+jf5hXsHez4eNEMbGysUTodR/cfY82S9RaL+b7SDIRP/xLvb2egdDqi12wh+eJV3N/qT+Kp88TvPEiJUa+iHOzx/Mx471tqyC1C35qCstLzxDLjTI+G2Hhujv3QYvXFoxo9eSaHj50gKiqaVp37MuTlfnTrWPhmqczNxk3bad++JefO7CM+IYFXXhmRvu7I4S3UrdcWW1sbNm5YgbW1FXq9nu3b97Dgu+UAjB77PvO//phhw15F0zRefmW4pVIxSjNw/d1vqLBsCkqv47bpvMlrZG/iT1zk7tZDlJ44EJ2DPb7zjJ/JySERXB40HbfnmuDcoCpWbs4U72GcZfnqiC9IOJ3zq7PMroicD+Zm19a9+LVuyo7D60hMSGTs21PS1/26cyUd/Xvd9/Wj332b8hXKYTBoBN8I5d2Rhe8rRczFUKimrcl/6p/McqSUGgEMMj1doGna7HtfuaGMY0znAG2Aa0AK8L2maT8rpYKAVUAHIAnopWnaRdMkNl8ClTE2ZP/QNO11pVQjYDEQB2wA+mqa5pP5KzdM91MuBzpqmpZ5NgLtcOkuj5xbYVcveA2rPXtbOox81zVsBUN8XrB0GPnqq6AfOejd1dJh5LuGIatZUtryQ3fzW//gZcwtU7Tyeuv6MqaW+3ffa5ybd68up6G3n6XDyHcHQ3Zxscq/o7HzKCqc3kxKxGVLh5GvrEuUx8qmtKXDyHepycEcLdPpwQX/ZWpfX0dROyesF7yGJ0vUtnQY+e5SxNF/7SDPiT69C6TVOD1oRaH4m/yj72nUNG0WMCvbMifT/xpwv+9P/FjTtLHZXhuBsecx++85QNbhp5NMyxcBi0yPj2GcdEcIIYQQQgghRD77R41GIYQQQgghhBBG/44B/f+cWRuNmqb5mPP3CSGEEEIIIYR4PNLTKIQQQgghhBCPoahPhCONRiGEEEIIIYR4DEW7yWiZ72kUQgghhBBCCPEvIT2NQgghhBBCCPEYivpEONLTKIQQQgghhBAiT9LTKIQQQgghhBCPoahPhCM9jUIIIYQQQggh8iQ9jUIIIYQQQgjxGIp2PyMoTSuyKRbZxIQQQgghhCiClKUD+KeG+bxYIG2Pz4N+KBR/kyLd0/iqTw9Lh5Dvvg36iY/K9bV0GPluzNVlbPDoZekw8tWzN1cywudFS4eR72YF/cCcMkVvHxx6fRlTy/WxdBj56t2ry/nZq2jlBNA9dDnhbVpYOox8V3LrbjqWfc7SYeS7X6/9hpVNaUuHka9Sk4NJibhs6TDynXWJ8kzy6W3pMPLdtKAVjPEpWucYHwWtJLhRS0uHke9KH9hh6RBEHop0o1EIIYQQQgghCppWxAc5ykQ4QgghhBBCCCHyJD2NQgghhBBCCPEYDJYOoIBJo1EIIYQQQgghHoN8T6MQQgghhBBCiP8s6WkUQgghhBBCiMdQtPsZpadRCCGEEEIIIcR9SE+jEEIIIYQQQjyGon5PozQahRBCCCGEEOIxyOypghcnD6Saf22SE5JYOOpLrp26kqNM51G9aNS1OQ7FnBhatV/68hfeHUClRs8AYGNng3OJYgyr/pK5Qs+i1ZR+lPevSUpCEptGfcPNk0E5yng840PAp4OxsrPh8s5Atk9ZCkDTkd2p0KY2mkEj/nY0m0bOJ/ZWFO5PetHhk9fwqOrDnk9+4vA3G82cVYaS/jWoMq0/Sq/j+vKdXJqzPst694aVqDK1P85VynJs8BeE/XYIAJeq5Xjmo0FYOTmgGQxcnL2G0HUHLZFCnrpMHkBl/1okJySxctTXBJ8KylGmw6ie1O3aHIdijoyv+lL68hYvB9DgxZYYUtOIjYxh1Zh53AmOMF/wmTR/rx/lWtYkNSGJbSO+ITyXfbBkNR9azzLug1d3BPLHZOM+aOvqSPsv38KlTEmir4fz+5A5JN2NT39dqRrl6bF2Mr+/OZdLGw+bK6Uc2k3pTwX/GqQkJLN+1HzCcsnR8xkfOn36OlZ21lzceZzNU5akr6v3Ulvq9muDZjBwYUcg2z9YacboM3j4V6fm+/1Qeh1XVuzi3Nxfs6zX2VhR74s3cKvuQ/KdWA4OnkP8jQiUtZ46H72MW43yaAYDx99dSviBMwA0XTEGu1KuKCs9EX+e49j4hWCw3JVZ67r1cRoyFKXTkbBpAwmrVmRZb/fc89g/3wUMaWgJCcR89glp166ClRXO74zCquLTYDAQ+9UcUk4EWiaJXLz23mvU8a9LUkISn4+czaWTl7Kst7WzZezX4/Aq54nBYODQtkMsnrk4fX3T55rSa3hv0DSunL7CJ29/Yu4UcvXZrPfp0L4l8QkJvPzycI4FnsxRZvvWn/D08iAhIRGADgG9CA+/TZky3iz87nOKubqg1+uYOPEDNv2+w9wpPJJJM2bxx75DuLu5snbZPEuH80iendyfiv41SUlI5pdR8wjN5TPL+xlfun4yGGs7G87vDGTDe8Z60LNKOTpNH4SVrTWGVAPr311I8PFLOV5vac9PHkAlU44/5vG53G7UC9Tp2hz7Yo68W3Wg+YN8CLYN61HsnbdQeh1x6zcSuzTrZ45Dl444deuElmZAS0ggauYsUoOuovf0wOOHRaRcvQ5AyqnTRH002wIZCHP519zTqJTapZSqa+7f+4xfLUr5ejHRbyhLJ8ynz/RXcy13YvsRZnQan2P5j1MX837AaN4PGM2OxZs4+vufBR1yrsr718DN15NvW4xk8/jvaDPtpVzLtZ0+kN/HLeDbFiNx8/XE1686AIfmb2BR+wksDpjIpe3HaDysCwCJUXFsn7yUw99arrEIgE5RdeZADvX+kN3NRuHdpTFOFUtnKZIQHMHxYfMIWb0vy/K0hCQC3/qaP1qM5tCLM6kytT9WLg7mjP6+KvvVpISvFzP83uGnCd/SfforuZY7vf0vZneamGN58OkgPus4gU86jOXEpj95bnyfgg45V+X8a+Dq68nSZiPZMfY7/Ga8lGs5/xkD2TFmAUubjcTV15Nypn2wzpCO3Nh3mqXNR3Fj32nqDOmY/hqlUzQe35Nrf/xtjlTyVMG/Bu6+nnzZYiQbxn9HwLTcTxICpg/it3EL+LLFSNx9PXnSrwYA5RpVoWKbOnzTYTzz2ozlwDcbzBl+Bp2i1oyX2NvnIza3GEOZzo1wznY8+fTyI/luHL83Hsn5bzZRbVIvAMr3aQnA1pbj2NNzJtWn9AGlADj42hy2tZ7AVr+x2BZ35omODcybV2Y6Hc5D3+HuhDFEvjIAO/9W6MuWy1Ikacc27rw2kDuvv0L8jytxev1NAOwCngPgzmsDiRo3EsfBQ9JztLQ6/nXx9vFmcPPX+HLcXN6YPiTXcmu+Wc0bLd9gWIdhVK5bhTp+dQDw8vGm+5AejOk6mjdbv8m3731rzvDz1KF9S56q4EulKk15442xfDn3gzzL9u//FnXrtaVuvbaEh98GYML4Yfz086/Uq9+OPn2HMOeLGeYK/R/rHNCGebOmWTqMR1bRrybFfT35zG8Eaycs4Pnpg3It9/y0Qawdv4DP/EZQ3NeTp0z1YPtxvdjx+Wq+DJjA9lk/0358L3OG/1Aq+dWkhK8nH/kN55cJ39Jl+su5ljuz/ShzOk0yc3SPQKfDdeQwbo8Yx81eA3Fo0xIrn6z1YMLm7dzq+wrhA14jdtkqig17I31d6o0Qwge8RviA16TBCGgF9K+w+Nc0Gi2lZtt6HFy9G4DLxy7g4OxIsZKuOcpdPnaBu+FR932ves835dD6ffctU1AqtKnDqV/2AhB67BJ2Lo44lnLNUsaxlCs2TvaEHjNe0Tv1y16eamtspyfHJqSXs3awRdOMO3H87WjCTlzGkJJmhizy5lq7AvFXwki4egstJY2QtQfwaJ/1GkPC9QhiTl9Dy9azEXc5jPgrYQAk3bxDckQ0NsVdzBb7gzzTti5HVv8BwNVjF7F3dsA5l33w6rGLxOSyD148cJqUxGRTmQu4eroXZLh5Kt+2DmdM++DNY5ewdXHEIds+6GDaB2+a9sEzv+ylfLu6Ga//eY9x+c970pcDVB/YlkubDpNwO9oMmeStYps6nPjFGGPwsYvYuTjglC1Hp1Ku2DrZE3zsIgAnftnD022NJ+x1+7Zi/1frSUtOBYzHlyW413qS2KCbxF0LR0tJ4/q6g3i3q5OljHf7Olz90bhfBv92iFLNqgLgXLE0t/adBiDpdjQpd+Nwq+ELQKqpHlFWenTWVhadas7q6cqkhQRjCAuF1FQSd+3ApnHTLGW0+IyebGVnnx6vVTkfkgOPGstERaHFxRp7HQuBhm0bsOMXYw/auWPncHRxxK2UW5YySYlJ/H3AeIElNSWVSycvUdyrBADterdj45INxN2NA+Du7btmjD5vHTu2Y+nynwH489BRirkWw9Oz1EO/XtPAxcUJgGIuLoSG3iyQOPNT3ZrVKObibOkwHlnltnUIXG2sB28cu4idswNO2T6znEq6Yutszw1TPRi4eg9VTOcbGmDrZA+AnYs90TfvmC32h1WlbR2OmnK8dp/P5Wt5fC4XFjZVKpF6I5i0EGM9GL9tB3bNG2cpk6UetLczHkziP6lQNhqVUo5KqQ1KqeNKqZNKqZ7Z1scqpT5TSp1SSm1XSpUsqFjcPNyJDLmd/vxO2O1/dNLtXroEJcqU4uz+nMNpzMHZ043oTHnEhEXi7JH1RMLZw42YsMiMMqGROHtmlGk2ugevH/icKp0bs3fWLwUf9COw83QjIVN+iSG3sfN0u88rcles1pPorK2IDyo8JxQuHu5EZcotKiySYv+w4dfgBX/O7ArMp8gejaOnG7GZ8ogNjcQp2zZy8nQjNjRjH4wLjcTRVMahhAvxt6IAiL8VhUMJl/T3fbJ9Xf5esr2AM3gwZ0/3LMdZdB7HWXSm4yw6NBJn0/Z09/WibP1KDFr7Hv1XTcKrennzBJ6Nvac7CcEZeSSERmKfbVvZe7qREGLMQ0szkBIdj427E3dPX8W7bW2UXodDmZK4VvfFoXTx9Nc1XTmWjn9/TWpsIjd+s8zICwBdiRKkhd9Kf26ICEdfokSOcnbPd8Z98QocX3md2K8+ByD10iVsGzUBnR6dpydWT1VEV/LhGzAFqbhncSJCM4af3w67TXHP4nmWd3RxpH7r+hzfFwhAaV9vvMuX5sPVH/Hx2k+o3aJ2QYf8UEp7e3Ljekj68+AboZT29sy17IIFszhyeAsTJ7yTvuz9qZ/Su3dXgi4f4df1Sxj2TiHu/fmXc/Zw425IpjouLBKXbPWHi6cb0Znq+ruhGXXlxveW0H58b0bvn0P7CX3Y+tEq8wT+CIrl4+eyJelKliDtVkY9mHYrAn3JnKfUjt064fHTMlzefI2oWXPTl+u9PSm5eD4lvvoMmxrVzBJzYWYooJ/ColA2GoH2QIimaTU0TXsG+D3bekfgiKZpVYHdwGRzB/io6ndswtGNB9EMhWnzP5o9H//EvEbDOL12P7UHtLF0OPnOtpQrNecO4fg784rklbQ6nZtSpnp5dn7z64ML/wvc20TNJvdl34wfisQ201npsHN15PvOk9k2YwXdvhpq6ZAeWdDK3SSERtLq92nUfL8ft49cQEvLqPf29vqQ32q+ic7WilJNq1ow0oeTuH4tkQN6E7dgPg69+xuX/b6RtPBbuH01H6c3hpJy+hT8C+t2nV7H6Dmj+XXhem5eM14o01vp8fbxZsIL4/lk6Me89eFQHF0cLRzpw+s3YCi1arfGz78LTZvUp2/f7gC82LMzS5b8hE/5unR8vj+LFn2BKiRDikVW9fu2ZuPUpXzceCgbpy6ly4evWTqk/7y4X9Zxs0dfor/6BpeBfQFIux3Jzc69CB8wmLuff4XbexNRDoXn1h6R/wrrRDh/A58qpT4EftM0bU+2yt0A3Lv0tAxYnZ+/3K9fO5r3ag3AleMXcffOuErr5lmcqEy9BA+rXscmrHh3Qb7F+DBq9W9N9Rf9AQg7cRkX7+IEm9Y5e7oTk23IR8zNO+k9HgDOXu7EhOUcFnJ67X66LxrFvs/y9c/+WBLD7mCfaTvZeRcnMZfY82LlZE+95WM498Eqov66WBAhPpIm/drSsJfx3rDrxy/hmik3V0937j7iPvhUk2do/VYXvuz5XvrQR3OoNqA1VXsZ98Fbxy/jlCkPJy93YrNto9iwOzh5ZeyDjl7uxJnKxEdE41DK1djLWMo1fShqqeq+tP/yLQDs3J0p518DLc3A5c1/FWhu99Tt34ZapuMsxHSc3eOSx3Hmkuk4c/FyT+/hjw6N5OzvR4zvdfwymkHDwd2Z+MiYgk4ji4SwSOwz9Q7ae7mTkG1bJYTdwd7bnYTQSJReh7WLA8mRsQAcn7wsvZz/+snEXA7L8lpDUgohm//Cu10dbv1hmdEXhogI9Jl6B3UlSpIWkfcEUUm7tuM0bDh8DBjSiJv3JXGmda6zvyTtxvWCDfg+Avo/S7te7QC4cOICJbwyekyLexbndtjtXF/31syhhASFsP67jEnDIkJvc+7YOdJS07h5/SYhV0Lw9vHmwokLBZtELt54fQAvv2y8B/vIkUCeKOOdvq70E14Eh4TleE2IaVlsbBwrf1hLvbo1WbbsZwYOfJFnnzOe7B788y/sbG0pUcI9/Z5H8Xga9GtDXVNdH3z8MsW8M9Vxnu5EZ6s/osPu4JKpri/mlVFX1urWPH1SnJMb/qTzzNznkjC3Rv3a0CD9c/nyY38uFwaG8Aj0pTLqQX2pEqSFh+dZPmHrTlxHv2N8kpKCISXF+PDcBdKCQ7Aq+wQpZ88XZMiFWmG6/7AgFMqeRk3TzgO1MTYepyml/vegl+Tn79+1dHP65DWBWw7TsGsLAMrXeoqEmPgH3ruYneeT3jgUc+TSUfMeSMeWbGNxwEQWB0zkwpa/qNrNeL+OV60nSYqJJ8401O+euFtRJMcm4FXrSQCqdmvKxa3GE283H4/0ck+1rU3kpVDzJPGQ7h67hGN5T+zLlkRZ6/Hu3IibD9loUNZ66iwawY2f9qTPqGpp+5Zu4dOAcXwaMI6/txyhbtfmAJSrVYHEmPhHukeidFUfesx4le9e+ZhYM98j9/fibfzQfiI/tJ/I5c1/Udm0D3rUepLkmPj04ab3xJv2QQ/TPli5W1MubzFuxytbj1K5ezPj8u7N0pcvaTKCxY2Hs7jxcC5tPMSuiYvM1mAEOLJkK98GTODbgAmc23KE6t2MMZauVYHEmARis+UYeyuKpNgESteqAED1bs04bzrOzm35C59GlQFw9/VEb21l9gYjwJ3Ayzj5euJQxng8lenUkNBsf9PQzUcp94Jxvyz9XH1u7T0FgN7eBr29LQClmj+DIc1AzPlg9A622Jnu71R6HV6tahFzMQRLST13Fn3pJ9B5eoKVFXZ+LUk+kPWec33pjMl/bBo0Ii34hvGJrS3Y2QFgXbsuWlqacVZVC9m4ZAPDOrzNsA5vc3DzAVp2M57YPl3raeJj4rlzK+cFtL6j+uLo7MC3U7JOdHNw8wGqNTIOM3Nxc8Hb15uwazkbZ+bw9bzF6RParF+/mX59jL2GDerXJvpuNGFht7KU1+v1FC9uHOJoZWXFs8+25tSpcwBcvxZMS39j/VOpUgXs7GylwZiP/ly6lS8DJvBlwARObzlCza7GevCJWhVIikkgNttnVmx4FEkxCTxhqgdrdm3GGVOdHn3rDr4NjfVg+cZVuV1Ibhc5sHQrswPGMztgPKe2HKG2KceytSqQ8Iify4VF8pmzWJUpjd7LWA86tG5J4p4DWcron8ioB+2aNCT1urH7QedaDHTGZoTe2wurMk+QGlK4zg3NrTAMT1VKuSultiqlLpj+z3GvllKqplLqgOk2vxPZbwPMS6HsaVRKeQORmqYtU0pFAdmni9QB3YEfgN7A3oKK5e+dR6nmX4vpu+eQnJDMotFfpq/738aPeT9gNADdxvWlQaem2Njb8NGBeexZtZ1fZ/8EGHsZD/+6v6BCfCiXdwRS3r8Gr/7xKakJyWwa9U36ugEbp7M4wDjr5tZJi+jw6WtY2dlwZddxLu88DkDzcT1xL++FZtCIDo5gy4SFADiWLEb/X6di42SPZjBQd1B7vms9NsvEOeagpRk4OX4R9X8Yj9LruLFyF7HnblBxTHeijl/h1ua/KFazPHUWjsDa1RGPtrWpOLoHf7QYjffzjXBvWAlrNyee6Gk8CT7x9jyiT1nuJDCzMzuPUdm/JhN2f05KQhIrR2dMvT5y40w+DRgHwHPjelO7UxOs7W3434Ev+XPVTjbP/pmO4/tg62DLgK/eAeBOcATfv2r+KfSDdgRSrmUN+u/9lJSEZLaPzNgHX/x9Oj+0N+6DuyYuovUs4z54dedxrpr2wb++/JX2Xw+lyostiLkRwaYhc8yew4Nc3BFIBf+avPnHLFJNX7lxz6sbZ/BtwAQANk1ayPOmr7a5tOs4F005Bv64i+c/fo3BW2aSlpLK+pGWmWZfSzMQOGERzVaORel1BP2wm+jzwVQZ3Y07x68QuuUoV1buov6cN2i//1OSo+L483Xj9rAt7kKzlWPRNI2E0DscHvo1AFYOtjRePAKdjTVKpwjfd5rLlrwP1ZBG7NzZFPvgE5ROR+LmjaRdDcJhwCBSz58l+cB+7Dp1xaZWHUhLxRATS8xHxhk7da5uFPvgY9A0DBHhxHw43XJ5ZHNkxxHq+tflmz3fGr9yY9Ts9HWfb/qCYR3eprhncXq+/SLXL1xn9kbjfZobFv/Glh+2cHT3UWo1r82X27/CkGZg4fSFxESZ/8JFdhs3bad9+5acO7OP+IQEXnllRPq6I4e3ULdeW2xtbdi4YQXW1lbo9Xq2b9/Dgu+WAzB67PvM//pjhg17FU3TePmV4ZZK5aGNnjyTw8dOEBUVTavOfRnycj+6dWxn6bAe6PzOQCr612TE7s9ITkhi9eiMevDNjTP40lQPrn/3e7p98rrxKzd2Hee86X77deMWEDC5PzorHalJKawbb95RWg/j7M5jVPKvydjds0lOSOKnTDm+s/EDZgcYZ9MPGNebmp0aY21vw4QDczm8aidbZxeiOSHSDER9OocSsz8EnZ643zaReiUI51dfIuXMeRL37sepe2ds69VBS01Fi4nhztQPAbCpWR2XVweipaaCphH10Wdo0ZavKwTjgO2aps1USo0zPR+brUw80F/TtAumNtdfSqnNmqZF3e+NlVYI7wNSSrXDNAgISAHeAD4BRmmadkQpFQt8A7QFbgE9NU3L3p+uverTw4xRm8e3QT/xUbm+lg4j3425uowNHoVvWu3H8ezNlYzwedHSYeS7WUE/MKdM0dsHh15fxtRylvk6koLy7tXl/OxVtHIC6B66nPA2LSwdRr4ruXU3Hcs+Z+kw8t2v137Dyqb0gwv+i6QmB5MScdnSYeQ76xLlmeTT29Jh5LtpQSsY41O0zjE+ClpJcKOWlg4j35U+sONfe7Nxv3JdC6RRtfTq6of+myilzgF+mqaFKqW8gF2apt13em+l1HGgu6Zp970PoVD2NGqathnYnG2xX7YyIxBCCCGEEEIIAeChadq9ccJhgMf9Ciul6gM2wKUHvXGhbDQKIYQQQgghxL+FucZuKqW2Abl959DEzE80TdOUUnmGZeqJXAoM0DTtgbdP/isbjZqmOVk6BiGEEEIIIYQAMJip2ahpWuu81imlbiqlvDINT72VRzkXYAMwUdO0gw/zewvl7KlCCCGEEEIIIR7JemCA6fEAYF32AkopG2ANsETTtJ8f9o2l0SiEEEIIIYQQj0EroH+PaCbQRil1AWhteo5Sqq5S6t5UxC8AzYGXlFKBpp+aD3rjf+XwVCGEEEIIIYQQGTRNuw20ymX5EUxfYahp2jJg2aO+tzQahRBCCCGEEOIxPHAmmX85aTQKIYQQQgghxGMw10Q4liL3NAohhBBCCCGEyJP0NAohhBBCCCHEY/gHk9b8q0hPoxBCCCGEEEKIPClNK7Kt4iKbmBBCCCGEEEWQsnQA/1TXcs8XSNtj9dX1heJvUqSHp56r1MHSIeS7p89u4lfPXpYOI991DFvJIJ/ulg4jX30f9DNrPXtbOox81zlsBSu9+1g6jHzXK2Q5WzxetHQY+artzR+YUq7obaspV5fTu1wXS4eR71ZcXVNk6/ejZTpZOox8Vfv6Oib5FL36fVrQClIiLls6jHxnXaI82z16WjqMfNXq5iqqezaydBj57kTYAUuHIPJQpBuNQgghhBBCCFHQivDoTUAajUIIIYQQQgjxWOQrN4QQQgghhBBC/GdJT6MQQgghhBBCPAaDpQMoYNLTKIQQQgghhBAiT9LTKIQQQgghhBCPQSvi9zRKo1EIIYQQQgghHoNMhCOEEEIIIYQQ4j9LehqFEEIIIYQQ4jHI9zT+xzk0rYPHxNdBp+Puz78T+e1PWda7vdSFYt3bQ1oaqZF3CZv4GakhtwAoOWoQji3qg04Rv/8Yt6bPs0QKOZT0r8EzU/uj9DquLd/Jxbnrs6x3b1iJZ97vj3OVshx9/QtCfzsEgEvVclT7cBDWzg5oaQYufL6GkHUHLZFCnnpPHkQ1/1okJyTz3ai5XDt1JUeZrqN60bhrCxyKOTKkar/05e7eJXj507dwcHFEp9Px84fL+HvXMXOG/0Cl/KtTzbTtri7fyYW5v2ZZX7xhJaq93w+XKmU58vocQkzbrjDw8qtO7an9UDodl1bu4ky22HU2VjT84g3cq/mQdCeW/a/PIe5GBOW6NKbykOfSy7lWLsPv7SYRdeoq1cf2wKdHM2yKOfLzUy+bO6UcivvXoNK0ASi9jhvLdxA0J+ux5dawEk9PHYBTlbL8PfgLbv72Z5b1eid7muz5hFubjnB2wkJzhp6rDlP685R/DVISklk7aj6hJ4NylPF6xofOn76OtZ01F3YeZ9OUJQB0nzuUEuW9ALBzcSAxOp55ARMo3/QZWo97Eb21FWkpqWydsYIr+0+bM60s+k95mZr+dUhOSGLeqDkEnbycZb2NnQ3Dvh6NR1lPDAYDR7cd4YcPlwJQqX4V+k0eRNlKPswZ+imHNh6wRApZFNX63cWvFk9MeRX0Om6v3MrNr37Jsr7Uq89T/MW2kJZGyu27XBs1h+TgcOyr+FJmxuvonRzAYCBszk/c+XWvhbLI3bOT+1PRvyYpCcn8MmoeoaeCcpTxfsaXrp8MxtrOhvM7A9nwnvE486xSjk7TB2Fla40h1cD6dxcSfPySmTN4NJNmzOKPfYdwd3Nl7bLCcV70MNz9a1Bx2ksovY6Q5Tu4OmddlvWuDSvzlKl+PzX4c25lqt9bhqwk9sw1ABKDIzjR/2Ozxv4gY6cNp1mrxiQmJPLusKmc+ft8jjJfr/iMEh7F0VvpOXrwODPGf4LBYKBilQq8+9EYHBwdCLkeyrghk4mLjbdAFqKgyfDU+9Hp8Pjfm9x49V2uPDcY52f9sHmybJYiiWcucbX72wR1GkLs5r2UHDUIALtalbGvXYWgTkMI6vgGdtUqYl+/miWyyEqnqPbBQP7s/SE7m4/Cu0tjnCqWzlIkITiCY8PmEbxmX5blaQlJBA79ml0tRnOw10yqvt8fKxcHc0Z/X9X8auHh68V4v6EsnjCP/tNfy7Vc4PYjTO00Lsfyjm914/CG/bz37GjmD/2MftNeLeiQH41OUeODgRzo/RHbm4/miS6Ncc5l2x0dNo8ba/ZbKMjcKZ2izoyX2NXnIzb6jaFcp0a4PJU19vK9/EiOiuO3JiM59+0makzqBcDVNfv5vc0Efm8zgQNDvyb2WjhRp64CELz1GFsC/mf2fHKlU1SeOYijvWeyr9lIvLo0wTHH9rnNyWFfE7Z6X65vUWHcC9w5eNYc0T7QU/41cPf15IsWI/l1/Hc8O21gruWemz6IX8ct4IsWI3H39aSCXw0Afn5rDvMCJjAvYAKnfz/Mmd8PAxB/J4aVgz7h63bjWDtiHl0+e8NsOWVX0782nr7ejGgxhAXjv2bQtMG5ltvwzTpGtRrK+ICRVKxbiRp+tQGICAln3sg57F/3hznDzltRrd91OspMG8zF/u9xpuVbuHVqht1TZbIUiT95hbPPjuBM22FEbdxP6YkvAWBISOLqO7M503ooF/u9xxOTX0bv4miBJHJX0a8mxX09+cxvBGsnLOD56YNyLff8tEGsHb+Az/xGUNzXk6dMx1n7cb3Y8flqvgyYwPZZP9N+fC9zhv+PdA5ow7xZ0ywdxqPRKZ6eOYjA3h9wsNkIPHKp3xODIzgz7Ctu5lK/pyUmc6jVWA61GlvoGoxNWzWiXPkyPNeoB++PmsmkD8fkWm7UaxPp0ao/XVv0wb24K207tgRgyqzxzJ7+Nd38+7J9025eGtLXnOEXKoYC+ikspNF4H3bVK5JyLYSUG2GQkkrMxt04tWqYpUzCnyfQEpOMj4+fxdqzhHGFpqFsbVDWVigba5SVnrSIKDNnkJNbrQrEXQkj/tottJQ0QtYewLNd3SxlEq5HEHPmGhiydrPHXQ4j7koYAEk375AUEY1tcRezxf4gtdrWY//qXQBcPnYBB2cHipV0zVHu8rEL3A2PyrFcQ8PeyXiSZO/iQNTNOwUY7aNzq1WB2Cs307fdjbUH8GxXJ0uZ+OsRRJ+5DobCVM2Ae60niQ26Sdy1cAwpaVxbd5AnssX+RLs6XPnJePJ9/bdDeDatmuN9ynVuxLV1Gb05t49eJPFWVIHG/rCK1a5A/JUwEq4at0/Y2v2Uap/12Eq8Hk7s6WtohpxDWJyr+2JTshi3d50wV8j39XSbOhz/ZQ8AN45dxM7FAadSrlnKOJVyxdbJnhvHLgJw/Jc9VGpbJ/tbUfXZBvy93nghI+zUVWJM2+zW+RtY29mgt7HMoJc6beqz55edAFw8dh4HF0dcS7llKZOcmMzpAycBSEtJJejkZdw9iwMQcSOc62evYshle1pCUa3fHWs+RVJQGMnXbqKlpHJn/R6Kta2fpUzsgb/REpMBiDt6DmvTNkq6EkJSUCgAKTcjSbl9Fyv3wpEXQOW2dQhcnek4c3bAKdvnllNJV2ydM46zwNV7qNLWuF01wNbJHgA7F3uiC9nnVm7q1qxGMRdnS4fxSFxqVyDhyk0STfX7zbX7KdG+XpYyGfV74fr8fRD/ds359cdNAJw4egpnFydKlCqeo9y93kMrKz3WNtbpM4WWK1+Wvw4YR2Ud2H2I1s/5mSfwQkgroH+FRaFqNCql+iulTiiljiulliqlOiql/lRKHVNKbVNKeZjK1VdKHTAt36+Uerog4rHyKEFKaHj689SwCKw8ch5I9xTr3pbYP44AkBh4lvg/T/DknuU8uWc5cXuPknz5ekGE+UjsvNxICLmd/jwx9DZ2Xm73eUXuXGs9ic7airigm/kZ3mNx8yhOZKbcIsMicfPMe3tlt+6zH2nUuRmfHJjPOwsnsHzydwUR5j9mn2PbRWLv5W7BiB6eg6c78Zlijw+NxD7bfmfv6UZ8SCQAWpqB5Oh4bNydspQp+3xDrq61/BDA3Nh5upOYefuERGLr+ZDbRymentKP81OWFVB0j87F053oTPlEh0Xi4pF1m7l4uBEdFplRJjQSl2w5l6tfibiIu0TmUldUCahP6Mkg0pJT8zn6h+Pmmb3OuI2bR97bzMHFgdqt63JqX+Fo2GdXVOt3a8/iJIdEpD9PCb2d3ijMTfEX2xC9668cyx1qPoXO2oqkq2EFEuc/4ezhxt2QTMdQWCQuntmOM083okMzytwNjcTZdCxufG8J7cf3ZvT+ObSf0IetH60yT+D/Mdnr96SQ29h6PvyxpbO1pt7mGdTdOI0SHeo++AVmVMqrJGEhGcf6zdBwSnmVzLXs1ys/Y9fJjcTFxrP1V+MFt0vnruDfvjkAbTu2xNO7VMEHLSyi0DQalVJVgUlAS03TagDDgL1AQ03TagE/APf6zM8CzUzL/wfMsEDIWbh09MeuakXufGe8z8K6rBc25ctwya8fl1r0xaFhDezr5Ow5+TeyLeVKrTlDCHxnHhShm34bPN+UfT/vYlSjwcweOINXPxuKUsrSYQmT4rWeJC0hmbvnblg6lHxXZmBbIrYfIynTiWFR8czzjfh7fc6GfsmnStN63Iv8Or5wXZzJi06v4605I/l94QZuXS8cjamC8G+v3927tMCxegVuzluTZblVKTd8Zg8naOQX/8q88lK/b2s2Tl3Kx42HsnHqUrp8mPttGcKy9td5k8PtJnDyjS+o+P4A7Mt5WDqkf+SNXsNpWaMjNjbW1G9qHFXyv+HT6flSV37YvBBHJwdSLHQRsDAwoBXIT2FRmCbCaQn8pGlaBICmaZFKqWrAKqWUF2AD3JvVpBiwWCn1FMbRGdYFEVDqzQisM11tsfIsQerN2znKOTSqifvrL3K93xi0lBQAnFo3JvH4WbT4RADi/jiCfc3KJPx1qiBCfWiJoXew9864QmvnVZzE0IcfzmLlZE+DZWM4O3MVUUcvFkSIj6Rlv/Y079UKgCvHL+GeKTd3T3fuhOXcXnlp1rMVswYY77O4dPQ81rY2OLk7E3M7On+D/ocScmw7dxL+JY2M+LBIHDLF7uDlTkK2/S4h7A4O3saclF6HjYsDyZGx6evLdmrE1bWF617NzBLDIrHLvH283UkKe7jt41r3KVwbVKLMS23RO9qis7EiLT6RC9NWFlS4uarXvw11XvQHIPjEZVwy5ePi6Z5j6Fv0zTtZehZdvNyz9Dzq9Doqt6/HN89NyvI6F093XvxmOGtGzOPOtVsFkUqe2vTvgP+LbQC4fOJitjqjOHdu5r7NXpk5hLArIfz+/W9mifOfKGr1+z0pYbex8S6R/tzaqzgpudTtzk1r4Dm0B+d7TETLdOKqc7KnwqJ3CfloGfHHck7wYW4N+rWhbi/TcXb8MsW8Mx1Dnu5Eh2U7zsLu4JJpVEkxL3diTMdirW7N0yfFObnhTzrPLGT34hcR2et3W+/iJIU9/LF1r2zi1Vvc2X8a52o+JFy13MWnngO70a3P8wCcCjyDp3dGI9bDqyS3Mo2yyy45KZmdm/fg3745B/84TNDFq7z+4jsAlCtfhmatmxRo7MJyCk1PYx7mAHM1TasGDAbsTMunAjs1TXsG6Jhpeb5K/Ps81uW8sS7tAdZWOAe0IHZH1tnkbCs/icd7bxM85D3SIu+mL08NDce+XjXQ68BKj329aiQVguGpUYGXcCzviX3ZkihrPd6dGxG2Jecwntwoaz11F47g+k970mfcs7QdS39nSsBopgSM5tiWQzTu6gdA+VpPER8Tn+u9i3mJDImgShPjZEVeT5bG2ta60DQYwbjtnMp74mDadk88wraztMjAyzj7euJYpiQ6az1lOzXkRrbYg7ccxbeHcYhLmefqc3NvpgssSlG2YwOuriucQ1MBoo9dwiHTseXZuTG3Nj/c9vl7yFz21HmLPfWGcv695YT8uMfsDUaAw0u2pk9ec3bLEWp0awbAE7UqkBSTQGy2+0djb0WRFJvAE7UqAFCjWzPObc3IuXzTZ4i4FJKlIWnn4kDvhaPY9uEPXD9i/hP4rUs2MSFgBBMCRnBky58062Y8ea9QqyIJMfFE3cp5IthjVG8cnB1Y+t735g73kRS1+v2euOMXsPXxwqZMKZS1FW7PN+Pu1qwx2lf1pezMN7g0aDqptzM+i5W1FeW/Hc/tX3YStbFwXHT6c+lWvgyYwJcBEzi95Qg1u2Y7zrJ9bsWGR5EUk3Gc1ezajDOm7Rp96w6+DSsDUL5xVW4XkiHFRU2MqX63Mx1bHp0bE7H5yEO91qqYI8p037a1uzOu9Z8m7rxlR8ysWvgLL7QewAutB7Dj9z/o+EIHAKrXrkpMTBwRt7JelLF3sE+/z1Gv19OsdWOuXDROSOdewjhMVynFa8MH8tOSrL38/yWaphXIT2FRmHoadwBrlFKzNE27rZRyx9ijGGxaPyBT2czLXyqwiNIM3Jr6NU98Nw10eu7+soXki9coPrQfiSfPE7fzT0qOfhmdgx3esycAxsZi8JD3iNm8F4eGNfBZ/zVoELf3CHE7/3zALyx4WpqBkxMW0XDleJRex/WVu4g9d4Onx3QnKvAKN7f8RbGa5an3/QisXR3xaFObp0f3YFeL0Xg/34jiDSth4+ZEmZ7Gk/vAYfOINs1kaWkndh6lun9tZu6eS3JCEt+P/ip93ZSNHzMlYDQAPcb1pUGnZtjY2/LJgfnsWbWddbN/ZNW0xQyY+TptX34OTdP4btSXlkolV1qagRMTFtF45TjjV26s3EXMuWAqjelOVOBlwrYcxbVmeRp8PxxrV0c829Sm0uju7GiR+0xo5o79yMRF+K0Yi9LruPzDbqLPB1NtdDcij18heMtRLq3cRaMv3uC5fZ+SHBXHvjfmpL++VMNKxIdEEnct69XPmpN6Ua5zY6zsbeh0ZA6XVu7k5KerzZ0eYMzx7PiF1P5hAkqvI3jlTuLO3eDJMT2IPn6Z8M1/4VKzPDUXjsTa1ZGSbWvz5Oju7G8x2iLxPsiFHYE85V+Tt/+YRUpCMutGzU9f9/rGGcwLMNZ5GyYtpPOng7Gys+HiruNc2Hk8vdwzHRtxMtvQ1PoD2uLu40GLt7vS4u2uACztN5M4C1ygCdzxFzX96/DZH1+TlJDE/FEZ+9yMjbOYEDACd8/idBnag+CLN5i+4VMAtizZyK4ftlG+egWGfzMWx2JO1G5dj+7DX2RMm2Fmz+OeIlu/pxm4/u43VFg2BaXXcXvVdhLPX8drZG/iT1zk7tZDlJ44EJ2DPb7zjPVdckgElwdNx+25Jjg3qIqVmzPFexhne7w64gsSTuf8OiZLOL8zkIr+NRmx+zOSE5JYPTrjOHtz4wy+NB1n69/9nm6fvG78yo1dxzm/KxCAdeMWEDC5PzorHalJKawbv8ASaTyS0ZNncvjYCaKiomnVuS9DXu5Ht47tLB3WfWlpBs6N/55aP0wAvY7QlbuIO3eD8qb6PWLzXzjXfJLq6fV7HXxH9+DPFqNwfKo0lT55Fc2goXSKoDnriDsf/OBfaiZ7tu2nWavGbDj4E4kJSbz7TsbMtj9uW8wLrQdg72DHF0s+wsbGBp1OcWjfUX5abGwcdujchp4DuwGwfeMu1q4svKMxxONRhakFq5QaAIwG0oBjwBrgM+AOxkZlPU3T/JRSjYDFQBywAeiraZpPtrfTzlXqYK7Qzebps5v41bPwT6n9qDqGrWSQT3dLh5Gvvg/6mbWevS0dRr7rHLaCld59LB1GvusVspwtHi9aOox81fbmD0wpV/S21ZSry+ldroulw8h3K66uKbL1+9EynSwdRr6qfX0dk3yKXv0+LWgFKRGXH1zwX8a6RHm2e/S0dBj5qtXNVVT3bGTpMPLdibAD/9rJJPyfaFMgjaqdN7YWir9JYeppRNO0xRgbg5mty6XcAaBipkWTspcRQgghhBBCCHMoTF+PURAK+z2NQgghhBBCCCEsqFD1NAohhBBCCCHEv42hEN3yVxCkp1EIIYQQQgghRJ6kp1EIIYQQQgghHkPR7meURqMQQgghhBBCPBZDEW82yvBUIYQQQgghhBB5kp5GIYQQQgghhHgM0tMohBBCCCGEEOI/S3oahRBCCCGEEOIxaEX8Kzek0SiEEEIIIYQQj6GoD09VRbhVXGQTE0IIIYQQoghSlg7gn6rv3aJA2h6HQnYXir9Jke5pXO7d19Ih5Ls+Ics4XLqLpcPId/WC1zDYp4elw8hX84N+YlkR3Af7hixjtWdvS4eR77qGreCjckVre425uozPyhatnACGX1vGeJ+itw9+ELSiyNbvRS2vesFrGOPTy9Jh5LuPglay3aOnpcPId61uriIl4rKlw8hX1iXK09Dbz9Jh5LuDIbssHcI/phXx/iqZCEcIIYQQQgghRJ6KdE+jEEIIIYQQQhS0InzLHyA9jUIIIYQQQggh7kN6GoUQQgghhBDiMRT12VOl0SiEEEIIIYQQj0GGpwohhBBCCCGE+M+SnkYhhBBCCCGEeAxFfXiq9DQKIYQQQgghhMiTNBqFEEIIIYQQ4jFoBfTvUSil3JVSW5VSF0z/u92nrItS6oZSau7DvLcMT82Fl1916k7th9LpuLhyF6fn/pplvc7GisZfvI57NV+S7sSw9/W5xN2IAMC1chnqfzgIa2d7MGhsCvgfhqQUynVuxDNDn0fTNBJuRrF/6FckRcZaIj1c/GpR9v2XUTod4Su3Efbl6izrPV57npK9WqOlppEaGc2VEXNJDg4HoOKyd3Gs/TSxh89wYcB0S4R/Xz0nD+QZ/9okJySxaNSXXD91JUeZTqN60bBrcxyKOTGsar8s6+o824jn3nkBNI0bZ67y3bDPzRV6Fl5+1amXaR88lcc+WNy0D+7Jtg82MO2DmmkfVDpF8/lv4+RTCi3NwI2txwicscqsOXn4V6f61P4ovY6g5Ts5n0tOdee8gWt1X5LvxHJo8BfEX49AWeup/fEruNbwRTNonHh3CRH7zwBQulNDKg3rjNLrCN16lFPTfjBrTve0mtKP8v41SUlIYtOob7h5MihHGY9nfAj4dDBWdjZc3hnI9ilLAWg6sjsV2tRGM2jE345m08j5xN6KokrnxtR//TmUUiTHJbBl4iLCz1wza15+7/XD15TXlpHfcCuXvEpV86GdKa8rOwPZNdmY11PP1qfR8K64V/Bm5fOTuXnCeCyWbfYMTcf1RG9tRVpKKnumr+T6/tNmy6nj5P487V+T5IRkfh41j5BTOXPyfsaXHp8MxtrOhnM7A/n1vSUAeFYuS5fpL2PjYMudGxGseudLkmITjOsqlaHLjFewdbJHMxj4stO7pCalmC2ve4pq/V5U88ru+ckDqORfk5SEZH4c9TXBueyf7Ua9QJ2uzbEv5si7VQeaP8gHcPevQcVpL6H0OkKW7+DqnHVZ1rs2rMxTUwfgVKUspwZ/zq3f/kxf1zJkJbGmei4xOIIT/T82a+z/1KQZs/hj3yHc3VxZu2yepcN5ZCOmDqVRy4YkJSQydfhMzv19IUeZz5Z/RIlS7uit9AT++TefTJiNwWBIX9978Au8PXkI7Z7pxN3Iu+YMv9AwFI6JcMYB2zVNm6mUGmd6PjaPslOBPx72jS3S06iUclVKDTE99lNK/faIr1+klOpuerxLKVU332LTKerNGMDOPh/xm98YfDo1xOUp7yxlnuzlR3JUHOubjOTst79Ta9KLxtfqdTSe8waHxi1kg/84tnafjpaSitLrqPt+X7b1mM7G1hOIOnONigPb5lfIj0ano9z017jQdyon/d+meOem2D31RJYi8Scvc7rDKE61GU7khv2UmdQ/fV3ovLVcHjbbzEE/nGf8alHK14t3/YaybMJ8+kx/NddyJ7Yf4YNO43MsL+XjSfshXfi42yTeazuCH99fWNAh50rpFPVnDGBHn4/41bQPFsu2D1Yw7YPrmozkTLZ9sMmcN/hz3EJ+y7QPApyet4Ffm49hY9uJlKpXEW//6uZLSqeo8cFA9vX+iK3NR/NEl8Y4VyydpYhPb2NOWxqN4OL8TTwzqRcAvn1bArDdfxz7en5Atcl9QSls3Jyo9m5v9vSYzrYWY7Ar5UrJplXNl5NJef8auPl68m2LkWwe/x1tpr2Ua7m20wfy+7gFfNtiJG6+nvj6Gf/+h+ZvYFH7CSwOmMil7cdoPKwLAFHXw1n5wjQWthvP/i/W0u6DQeZKCQAf/xq4+niysPlIto37jpbTX8q1XKvpA9k6dgELm4/E1ccTH1Net8/d4NfXPufGn+eylE+IjGHdoE9Z2nY8m4fPp/3s1ws6lXRP+9WkuK8nn/iNYM2EBXSenvvftPO0Qawev4BP/EZQ3NeTin41AOg281V+/3Aln7cfx6nNh2n+2nMA6PQ6XvjsTdZM/I7Zbcfw7YvTSDMdd2ZVVOv3oppXNpX8alLC15OP/Ibzy4Rv6TL95VzLndl+lDmdJpk5uoekUzw9cxCBvT/gYLMReHRpgmO2uj4xOIIzw77i5up9OV6elpjMoVZjOdRq7L+mwQjQOaAN82ZNs3QY/0ijlg0o4/sEPZr04YMxnzLmg+G5lps4eAr92rxCb/+BuBUvRsuOfunrSnmXpH6LuoTeCDNT1OI+OgGLTY8XA51zK6SUqgN4AFse9o0tNTzVFRhiod99X8VrPUlM0E1ir4VjSEnj6rqDlGlXJ0uZJ9rV5vJPewC49tshPEwnql4tqhF15jpRp41XyZLvxKIZNFAKlMLK3hYAayd7EsLumDGrDI61niIpKJSkazfRUlKJXLcXt3b1s5SJ2X8SQ2IyAHF/ncfaq3jGur1/YzBdWS9sarStx8HVuwG4cuwC9s6OuJR0zVHuyrELRIdH5Vje9MXW7FryO/HRcQDE3I4uyHDzlH0fDFp3kCcesA96PmAfTEtI5qapd86Qkkbk30E4eLmbLSf3WhWIu3KT+Gu30FLSuLH2AF7ZcvJqV5drPxpzCv7tT0o2fQYA54qlubX3FABJEdGkRMfhVrM8juVKEXsljOTbMQDc+uMkpZ/Lui+bQ4U2dTj1y14AQo9dws7FEcdSrlnKOJZyxcbJntBjlwA49ctenmprvNaVnOl4snawTZ+yO+SvCyRFxxsfH72Isxm3F8CTbetwxpRX2LFL2N4nrzBTXmd+2cuT7Yx5RV4M4c7l0BzvG37qKnE3owC4ff4GVnY26G3MM+ilcts6HFtt3MeuH7uInbMDztnqCOeSrtg623P92EUAjq3eQxXTtirh68WVP88CcHHv31TtUA+Ap5pVJ+zsNcJMPSTxUaa638yKav1eVPPKrkrbOhw17Z/Xjl3EPpf98966mFw+wwoDl9oVSLhyk8Srxrr+5tr9lGhfL0uZxOvhxJ6+hpapl+rfrm7NahRzcbZ0GP9I83ZN2PjzZgBOHT2NUzEnipfK+XkTH2v8PNJb6bG2sYZMvWrvTHmLudPmU8TngXmgwjA8FfDQNO3eh28YxoZhFkopHfApMOpR3thSjcaZwJNKqUDgY8BJKfWzUuqsUmq5UkoBKKX+p5Q6rJQ6qZT65t7ygmTv6UZ8SGT68/jQSOy9sg4HdvB0I85URkszkBIdj627E87lPUHT8F8xhg6bp1FlyLPGMqlpHBq3kGd3zKTrsbkUq1iaSyt3FXQqubLxdCc5JCL9eXLobaw9i+dZvkSv1tzdedQcoT02Vw93IkNupz+PCruNm+fDn2h7lPfCw9eb0T9PZeya6VRtUbMAonwwh1z2QYdc9sH4XPZBl/KeaJpGyxVjCMi0D2Zm7eJA6Ta1CDM1xMzBzsuNhEzbJiE0EvtsjaDMZbQ0Aykx8di4O3P31DW82tVB6XU4lC2Ja3Vf7L3dib1yE+cnvXAoUwKl1+Hdvi723nnvywXF2dON6Ey5xYRF4uyRdXs5e7gRE5axTWNCI3H2zCjTbHQPXj/wOVU6N2bvrF9y/I7qL/pxZdeJAog+b06ebsSEZuQVGxaJk6dbjjKxmfLKrcz9PBVQj1sng0hLNk+vXDEPN6IyHVt3wyJxyRavi6cb0aGZyoRGUsy0PW9euJHegKwW0BBXU8OkhKnuH7hkHG/9Np3mg58r6FRyVVTr96KaV3bFPNyJyvIZFkmxR/gMKwzsPN1JzJRDUshtbB+hTtDZWlNv8wzqbpxGiQ75NohM3EdJz5LcCglPf34rJJySniVzLTt7xUdsOrGWuNh4dvxmvEjfrF0TwsPCuXj6klniFaCU2mZqG2X/6ZS5nGa8Cp1bq3MIsFHTtBuP8nst1WgcB1zSNK0mMBqoBbwDVAHKA01M5eZqmlZP07RnAHvAMp/ED0lnpadk/Yrsf+srtnR+nyfa18WjaVWUlZ6K/Vuzse1EVtd6iztnrlF16POWDveBindtgWONJwn7eq2lQzELnV5PKV8vPn1xCguGfk7fDwZj7+Jg6bAeibLSU6p+Rfa99RWbO79PmfZ103shwTh8telXb3Luu83EXgu/zzsVHldX7iIh5Db+m6dR/f1+RB65gJamkXI3jmNjF1J//ts0XzeZ+BvhaGn/zivXez7+iXmNhnF67X5qD2iTZV3ZRpWp3rMFuz6wzP2aBaV4xdI0Hf8i28Z/b+lQHtovY76hYd/WvPXrdGyd7NKHoOr0esrVe5pVw75kfvf3qNquHk82Nv9Q6UdRVOv3oprXf8X+Om9yuN0ETr7xBRXfH4B9uRydJMKC3uk9hudqdcPGxpq6TWtha2/LS0P78M3Hlrmdp7AxaFqB/GSnaVprTdOeyeVnHXBTKeUFYPr/Vi6hNgLeUkoFAZ8A/ZVSMx+UX2GZCOfQvdauqffRB9gL+CulxgAOgDtwCvg1j/fIFwlhd3Dwzriy5+DlTkJo1qGk8WF3cPR2JyE0EqXXYe3iQFJkLPGhkdw6eC59gpuQHcdxr+ZDSoxxWEzsVeN2u7b+T6q81bEg08hTclgkNt4l0p/beBUnJex2jnIuzarj9XZ3znabhGamXoB/wq9fO5r2ag1A0PGLuHsX5961LlfP4tzJ1AvyIHfCbhMUeAFDahq3b9zi1pVQSvl4cfWEea+exeeyD8bnsg86eLsTn8s+eDOXffBer2KDj18m5koYZxdsNl9CQGLonSy9gPZexuMntzLpx5WzA8mRxqGnf09ell6uxa9TiDUNewzbepSwrcYeBZ++Lc3WaKzVvzXVX/Q3xnDiMi7exQk2rXP2dCfmZtbtFXPzDs6ZegycvdyJyWWI+um1++m+aBT7PjNO8lGyUhnaffgKPw/4mMSogp84q0b/1jzTy5jXzROXcc40xM/J053YbDHHht3BKVNeuZXJjZOnOx2/eYfNw+dx92pun2f5p2G/NtQz5XTj+GVcvd25alpXzNOd6GzxRofdwSVTL3gxL3fumrZn+KUQvu9v/Fwt4evJ0/61AGOPZdChs8TfMe6v53YG4v2ML5f2m683H4pe/X5PUc0LoFG/NjToZbxv+/rxy7hmqiddPd25+wifYYVBYlgkdplysPUuTtIj3I5zr2zi1Vvc2X8a52o+JFy9me9x/td1e6kznfoY+2HOBJ6llHdGz2Ip75KEh+V9UTk5KZk/Nu+jWbum3L4ViVdZL5Zt+w6Akl4lWbz5GwYFvEFk+L9r380P/2AoaUFYDwzAOKpzALAuewFN0/rce6yUegmoq2nauAe9cWH5yo2kTI/TACullB3wFdBd07RqwLeAXUEHcjvwMs6+njiWKYnOWk+5Tg25sSXrMJfgLUcp36MZAGWfq8/NvcaZ/0J3ncC1chn09jYovY5SjSpx93wwCWGRFKtYGlt343h3z+bViL4QUtCp5Cou8AK2vl7YlCmFsrbCvVNT7mw5nKWMQ1Vfys18gwsDZ5B6u3DPgLVr6WamBYxmWsBoArccpmHXFgD41nqKhJj4XO9dzMvxLYep2NDYO+Do5kwpXy8irpn/wyr7PuiTyz544z77oFsu+yBAjTHdsXG258j/lmFudwIv4VTeE4eyJVHWep7o3IjQLX9lKRO65S/KvmDMqfRzDQjfZzzh1tvboHcw3g9cqvkzaKlpxJhysi3hAoB1MUfKv9SaoOU7zZLPsSXbWBwwkcUBE7mw5S+qdmsKgFetJ0mKiSfuVlSW8nG3okiOTcCr1pMAVO3WlItbjfm7+WRcSX+qbW0iLxkbxM7exek8/x02DJ/HnSvmmVzg+JJtLO8wkeUdJnJp819UNuXlWetJku+Tl6cpr8rdmnIp23bNztbFgc6LRrJ35ipCjuScoS+/HVy6lTkBE5gTMIHTW45Qq6txHytTqwKJMQk57g2LCY8iKSaBMrUqAFCrazPOmHJyLG7c35RS+L/VhT+XbwPg/O4TeDxdBms7G3R6Hb4NKnPrwiON+skXRa1+v6eo5gVwYOlWZgeMZ3bAeE5tOUJt0/5ZtlYFEmLiC+29i3mJOXYJh/Ke2Jnqeo/OjYnYfOShXmtVzBFlur/Z2t0Z1/pPE3fe/MfRf8Evi9bSv80r9G/zCrt/30tA93YAVK1dhdjoOG7fytrgs3ewT7/PUa/X06R1Q65evMals1cIqN6FLg1epEuDFwkPDWdAu9f+kw3GQmQm0EYpdQFobXqOUqquUmrB47yxpXoaY4AH3TF8r4EYoZRyAroDPxdoVBjvpToycTEtV4xB6XVc+mE3d88HU310N24fv0LwlqNcXLmbxl+8zvP7PiUpKpZ9bxi/3iT5bjxn5m+i/cb3QdMI2XGckO2BAPw9azVt1kzCkJJGXHAEB975pqBTyV2agWuTvuXpFZNBpyNi1XYSz1/He1Qv4o9fJGrrYZ54dwB6RzsqzB8NQFJwOBcHfgBApdXTsatQGr2DHTWOfMuVkV8SvTvQMrlkc3LnUar512La7jkkJySzePSX6esmbfyYaQHGfLqO60v9Tk2xsbdh5oF57F21nd9m/8Sp3YFUaVaDyVs/Q0sz8MsHS4kzQ+9OdlqagcMTF9Mql30w8vgVbpj2wSZfvE4n0z64N9s+2MG0DwbvOE7w9kAcvNyp9k5n7l4IJmCLcYa38wu3cnHFLrPlFDhhEU1WjkPpdVxduYuYc8FUHtOdqMDLhG45StCKXdSdO4S2B2aRHBXHocFzAGPDsMnKcWgGjcSwOxwe+nX6+1af2p9iVcsCcPbTNcReNv/MbZd3BFLevwav/vEpqQnJbBqVcWwP2DidxQETAdg6aREdPn3N+NUUu45zeedxAJqP64l7eS80g0Z0cARbJhiH+TQZ1gV7NyfaTH0JAC0tjSUd/2e2vK7sCMTHvwYD9xjz2pIprz6bprO8gzGvHZMW0daUV9DO4wSZ8nqyXV383++PvbsznRaOIvz0Vdb0+4gaA9rg6uNBg2FdaGCaKXZ13w9JMMPEU+d2BvK0f01G7f6MlIQkfh49P33d0I0zmBMwAYB1735P909ex9rOhvO7jnNuVyAANZ5vTKN+xuHDJzcf5q+fjPf0JEbHsXfBRt5cPw1N0zi3M5BzOwMLPJ8cimr9XlTzyubszmNU8q/J2N2zSU5I4qdM++c7Gz9gdoBx1u+Acb2p2akx1vY2TDgwl8OrdrJ1ds57oS1BSzNwbvz31PphAuh1hK7cRdy5G5Qf04Po45eJ2PwXzjWfpPrCkVi7OlKybR18R/fgzxajcHyqNJU+eRXNoKF0iqA564g7H/zgX1oIjJ48k8PHThAVFU2rzn0Z8nI/unVsZ+mwHsr+7Qdp3KoBP+9fTmJCEtOGf5i+bsnWBfRv8wr2DnZ8vGgGNjbWKJ2Oo/uPsWbJegtGXTgVhq/c0DTtNtAql+VHgFdyWb4IWPQw7600CyWolFoBVAcSgJuapj1nWj4XOKJp2iKl1DSgF8bZf84DVzVNm6KUWgT8pmnaz0qpXcAo0x8jM225d18zZWM+fUKWcbh0F0uHke/qBa9hsE8PS4eRr+YH/cSyIrgP9g1ZxmrP3pYOI991DVvBR+WK1vYac3UZn5UtWjkBDL+2jPE+RW8f/CBoRZGt34taXvWC1zDGp5elw8h3HwWtZLtHT0uHke9a3VxFSsRlS4eRr6xLlKeht5+lw8h3B0N2FfiklwWlYsm6BdKoOh9+pFD8TSx2T6Omabl+4mua9lamx5OAHF9GpGnaS5ke+xVAeEIIIYQQQgjxUArJPY0FprDc0yiEEEIIIYQQohAqLLOnCiGEEEIIIcS/UmG4p7EgSaNRCCGEEEIIIR6DDE8VQgghhBBCCPGfJT2NQgghhBBCCPEYNM1g6RAKlPQ0CiGEEEIIIYTIk/Q0CiGEEEIIIcRjMBTxexql0SiEEEIIIYQQj0Er4rOnyvBUIYQQQgghhBB5kp5GIYQQQgghhHgMRX14qirCXalFNjEhhBBCCCGKIGXpAP6pJ9yfKZC2x43Ik4Xib1Kkexp7luts6RDy3aqra+lQpoOlw8h3m65v4k4PP0uHka/cftrFWz49LR1GvpsbtIqJPr0tHUa+mx60gk/K9rV0GPlq1LVl/O7xoqXDyHftb/5AZJcWlg4j37mv2U35ErUsHUa+uxxxjCdL1LZ0GPnqUsRRghu1tHQY+a70gR1U92xk6TDy3YmwAzT09rN0GPnqYMguUiIuWzqMfGddorylQ/jHinBHHFDEG41CCCGEEEIIUdAMRbzRKBPhCCGEEEIIIYTIk/Q0CiGEEEIIIcRj0Ir4dCrS0yiEEEIIIYQQIk/S0yiEEEIIIYQQj6GoT4QjPY1CCCGEEEIIIfIkPY1CCCGEEEII8RgMRfyeRmk0CiGEEEIIIcRjkOGpQgghhBBCCCH+s6SnUQghhBBCCCEeg6GI9zRKo/EhvDTlFWr51yEpIYmvR33BlZOXs6y3sbNh+Ndj8CjricFg4K9th1n54VIAWvdpR7v+ARjSDCTGJ/DN+K8IvnDDEmlk8fp7r1OvZT2SEpL4dMSnXDp5Kct6WztbJsybgFc5LwxpBv7c9icLZy4EoKR3SUZ+NhInFyd0eh0LP1jI4Z2HLZFGFlY16+Mw8C3Q6UnavoGktStyLWfdoDlOo94neuxg0i6fQ1+hEg6DR6WvT/xpESmH9por7IfSffJLVPWvRXJCEktHfc2NU1dylOk4qif1uzbHoZgTI6sOyLG+Zvv6vDJvJB91HM+1vy/nWG8Oz07uz9P+NUlJSOaXUfMIORWUo4z3M750+2Qw1nY2nNsZyIb3lgDgVaUcz08fhLWtNYZUA+vfXciN45fwbViZvt+M5M6NWwCc+v0wO79YY860aPleP3z9a5KakMSmkd9w62RQjjIe1Xxo/+lgrOxsuLIzkB2TjXVEiwm9KN+6FoaUVKKu3uL3Ud+QFB2PzkpPu49eodQzPuj0Ok6t3suhL381a173lPCvQeVpA0Cv48byHVyZsz7LereGlag0dQDOVcpyfPAX3Pztzyzr9U72NNvzCTc3HeHMhIXmDP2+rGvVx+HloaDTkbRtA4mr86gzGjbHeexU7o56jbRL57CqUReHfq+BlTWkphC/+GtS/z5m5ujz9r8ZY/Br3YTEhERGD53MqRNn8yz7zbLZlClXmg7NemRZ/vKQfkx8fwR1KvpzJzKqgCN+OP+bMRq/1k1JSEhkzAPymr/sM8qWK02HZi8AMHzcG7Tu4IfBYOB2RCRjhk7mVliEuULPk23DehR75y2UXkfc+o3ELl2ZZb1Dl444deuElmZAS0ggauYsUoOuovf0wOOHRaRcvQ5AyqnTRH002wIZ5G7stOE0a9WYxIRE3h02lTN/n89R5usVn1HCozh6Kz1HDx5nxvhPMBgMVKxSgXc/GoODowMh10MZN2QycbHxFsgipxFTh9KoZUOSEhKZOnwm5/6+kKPMZ8s/okQpd/RWegL//JtPJszGYDCkr+89+AXenjyEds904m7kXXOG/8gmzZjFH/sO4e7mytpl8ywdjrAwiw5PVUq9pJTyfozX+yileudnTNnV9K+Dp68Xw1q8wbfjv+Llaa/nWu63b9YyotVbjA0YwdN1K1PTrzYA+9b9weh2wxgbMJz189bQf9Kgggz3odTzr4e3rzcvN3uZL8Z+wVsz3sq13C/zf+E1/9d4q8NbVKlXhbp+dQHo9XYv9vy2h7c6vMXMN2fy5vQ3zRl+7nQ6HF4eRuz0sUQPH4BNk5boniiXs5ydPbYB3Ug9fzp9Udq1K8SMHUzM6FeInT4Gh9dGgk5vxuDvr4pfTUr6evKe3zBWTviWF6e/nGu5v7cf5eNOE3NdZ+toh9/AAK4cy/kBZy4V/WpSwteTWX4jWDthAc9Pz/1Y6DRtEGvHL2CW3whK+HpS0a8GAO3G9WLn56uZGzCBbbN+pt34XumvCTp8lrkBE5gbMMHsDUZf/xq4+XjyXfORbBn3HW2mv5RrudbTB7Jl7AK+az4SNx9PfP2qAxC0528WtRnH4nYTuHMllAZvdgSg4rP10dtYsbjteJY++y41erfE5YkS5korg05RZeYgjvSeyd5mI/Hq0gTHiqWzFEkMvs3fw74mdPW+XN/iqXEvEHkw7xN8i9DpcHjtHWKmjuHu2wOwadoqzzrD7rnupJ47lb5Ii75LzPTxRL8zkLgvPsBpWO7HnSX4tW6KT/mytKzfiQkjpjH14wl5lm33bEvi43KejHt5e9DMryHB10MLMtRH4te6SXpeE0dM4/2Px+dZtm0ueX07dwnPtuhJR/9e7Nyyh6GjXivokB9Mp8N15DBujxjHzV4DcWjTEiufrPtgwubt3Or7CuEDXiN22SqKDXsjfV3qjRDCB7xG+IDXClWDsWmrRpQrX4bnGvXg/VEzmfThmFzLjXptIj1a9adriz64F3elbceWAEyZNZ7Z07+mm39ftm/azUtD+poz/Dw1atmAMr5P0KNJHz4Y8yljPhiea7mJg6fQr80r9PYfiFvxYrTs6Je+rpR3Seq3qEvojTAzRf14Oge0Yd6saZYO419D07QC+SksLH1P40vAP240Aj5AgTYa67Wpzx+/7ALgwrHzOLo44lrKLUuZ5MRkTh04CUBaSipXTl7C3bM4AAmxCenlbB3s0ArBzEoN2zZk+y/bATh77CxOLk64ZcspKTGJEwdOAJCaksrFvy9Swst4wqppGg5ODgA4ODtw++ZtM0afO32FShjCgjHcCoXUVFL27cCmbpMc5exffJnEdSvRUpIzFiYngSENAGVjA4XoAAWo3rYeh1b/AUDQsQvYOzviUtI1R7mgYxeIDo/K9T2eG9mTrfPWkZqUnOt6c6jctg7HVu8B4Pqxi9g5O+CcLQ/nkq7YOttz/dhFAI6t3kPltnXT19s62QNg52JPzM075gn8ASq0rcOpX4w906HHLmHr4ohjKdcsZRxLuWLjZE/oMWOP/qlf9lKhnTGvq3tOoqUZr0KHHL2Ek6e78UUaWDvYovQ6rOxsSEtJJTkmAXNzrV2B+CthJFy9hZaSRtja/Xi0r5ulTML1cGJPXwNDzmPHpbovtiWLcXvXCXOF/FCsnqqMITQYw01jnZG8dwc29ZvmKOfQ+2US16zIUmekXbmAdsdY76VduwI2tsZex0KgdYcWrPnxNwAC//obl2LOlPTIebHBwdGel9/oy9xPF+RYN2naKGa+93mhOllp3cHvEfLqw5fZ8oqNjUt/bO9gXyhys6lSidQbwaSFGPfB+G07sGveOEsZLT6j8avs7Qrd51Nu/Ns159cfNwFw4ugpnF2cKFGqeI5y93oPraz0WNtYp58flStflr8OGHvuD+w+ROvn/MwT+AM0b9eEjT9vBuDU0dM4FXOieCn3HOXiTXnpTXll3mbvTHmLudPmUwhOBR9K3ZrVKObibOkw/jUMaAXyU1jke6NRKTVCKXXS9POOqTfwZKb1o5RSU5RS3YG6wHKlVKBSyl4pFaSU+kgp9bdS6pBSqoLpNYtM5e+9R6zp4Uygmen1uV/yeUxunu7cDskYwnI77DbuHjkriXscXByp07oeJ/dlnCC17d+Bz/+YR5/xA1g0OecHtLkV9yxORKacIkIjKOGZdw+Go4sjDVo3IHBfIADLPluGf1d/lh5ayvuL3+fr/31d0CE/kM69JIbb4enPDZHhqOIls5TR+z6FrnhJUo8ezPF6fYXKuMxaiMunC4n/dlZ6I7IwcPVw405IRsM8Kuw2rp5574PZPVHVFzev4pzaadnhcy4ebtwNiUx/Hh0WiYtn1osVLp5u3A3NKHM3NBIXD2OZDe8tof343ozeP4cOE/qw5aNV6eXK1n6KtzZ9wIBFYyj1VNZesILm5OlGTGjG9okJi8QpW15Onm7EhkXetwxAtZ7NuWJqXJ3feIiU+CTeODKXwQdnc+SbjSTejcvxmoJm6+lOQqb9LzEkEtuH3f+UotKUfpydsqyAovvnlHsJ0iJupT833A5HVzxrPagv/xS6EqVI+StnnXGPdaMWpF0+D6kpBRbro/D0KkVocEYvRljITTy9SuUoN2L8EBZ8tZSEhKwXIlp38CMs9BZnT+UcTmhJHl6lCAm+mf48LOQWnl4lc5QbPn4I3321jISExBzrRk54k73HN9KpewdmzywEn1slS5B2K2MfTLsVgb5kzpwcu3XC46dluLz5GlGz5qYv13t7UnLxfEp89Rk2NaqZJeaHUcqrJGEhGdvqZmg4pXLZVgBfr/yMXSc3Ehcbz9ZfdwJw6dwV/Ns3B6Btx5Z4eufcfy2hpGdJboVknGfcCgmnpGfuec1e8RGbTqwlLjaeHb/tBqBZuyaEh4Vz8fSlXF8jRGGXr41GpVQdYCDQAGgIvArkPDMCNE37GTgC9NE0raamafc+ue5qmlYNmAvMfsCvHAfsMb3+s3xI4bHo9DrenjOC3xdu4Nb1jApzy5JNDGv+OitmLqHr0B73eYfCR6fXMXbuWNYvXE/YNeOJiF8nP7b9tI1+9fvxvwH/Y/Ts0SilLBzpAyiF/YA3SViS+4lC2sUzRI8YSPS4wdh16QPWNmYOsGAopej2bj9WT19q6VAeW/2+rdk4dSkfNx7KhqlL6fKhcXhZyMkgPm7yNnM7jOfAoi30+WakhSP9Zxq89TyGVANn1hiHeHrWLI8hzcC8ekP5tskI6r4aQLGyuZ+gFFZlB7YlfPsxkjJdCPjXUAqHgW8Sv/CrPIvoy/jg0H8wcfM+NWNgj6/yMxUp61OGLRt3ZlluZ2/HkHcGFYoG1T9hzOuJHHnd8+mML2laI4B1P2+i3ysvmjm6fy7ul3Xc7NGX6K++wWWgcahm2u1IbnbuRfiAwdz9/Cvc3puIcnCwcKSP7o1ew2lZoyM2NtbUb1oHgP8Nn07Pl7ryw+aFODo5kJKcauEoH907vcfwXK1u2NhYU7dpLWztbXlpaB+++bjw3NMt8l9RH56a3xPhNAXWaJoWB6CUWg00e8T3WJnpf4s0BNv270CrF9sCcOnEBYp7Z1x9Lu5ZnMibuZ8AvTZzCGFXQtn4fe6TVexfv4dXpg3O/4AfwnMDnqN9r/YAnD9+nhKZcirhVYKIPCYEGPbhMEKuhLD2u7Xpy9r1bMekfpMAOHv0LNa21ri4u3D3tuVu6DZEhqPL1LOocy+JlqnnEXsH9GV8cZoy27je1R2nsdOJ/XAiaZfPZbxP8DW0xAT0ZXyzLDe35v3a0rhXKwCuHr+Em3fG0B5Xz+JEhT3cSbitkx1eFcsw7If/AeBS0pXBC0Yz/5WPzTIZToN+bajXyx+AG8cvU8w7o4fKxdOd6LCsQ0yjw+5QzCujTDEvd6JNw1Brd2uePinOyQ1/0mXmqwAkZRoCfn5XIM9PG4iDmzPxd2IKJimgZv/WVDflFXbiMs5eGdvH2dOd2Gx5xYbdyRh2mkuZqt2b8WSrWvzY64P0ZZU7NSZo9wkMqWnE344m+Mh5PKuX5+61cMwpKSwS+0z7n523O0kPuf+51n0KtwaVKPtSW/SOtuhsrEiLT+T8tJUPfnEB0yIj0JfI6MHQFS+J4XZGPajsHdCX9cV52mzjeld3nCfMIGbGBNIunUMVL4nTuGnEfT4DQ1iIucPPot+gF+jZrysAJwJP4VXaM32dp7cHYaG3spSvXa8G1WpW4Y+jG9Bb6Slewp0V677lvXEf8kTZ0mzYvcr02lL8umMFndv2I+KW+W9D6DvoBXr26wLA34Gn8C7twV+mdZ7epQgLzXos1KpXnWo1q7D76G/peS1f9w19OmW9f3Hdz5v4/ocv+PxDy07sYQiPQF8qYx/UlypBWnjex3fC1p24jn7H+CQlBUOKsXc75dwF0oJDsCr7BClnLdND3HNgN7r1eR6AU4Fn8PT2SF/n4VWSW6F555WclMzOzXvwb9+cg38cJujiVV5/8R0AypUvQ7PWOW81MZduL3WmU5/nADgTeJZS3hnnGaW8SxIedv+8/ti8j2btmnL7ViReZb1Ytu07AEp6lWTx5m8YFPAGkeH/wotq4j/JHLOnupK1R9PuAeW1XB6n3nsPpZQOKNBuoC1LNrFliXE8fq2WdWg3IID96/fwVK2KxMfEEXUr571UPUf1xsHZkfljvsyy3NPHi7CgUNN71SU0yDITC/y2+Dd+W2y8H6Rey3p0fKkju9ftplKtSsTFxHEnl5z6j+6Pg7MDs0fPzrL8VsgtajatybaftlGmQhls7Gws2mAESLt4Dp3XE+hKeWKIjMC6SUviPs9083Z8HHdf7pT+1GnKbBKWfE3a5XPG10SEgyENXQkP9N5lMYRb9ib1P5Zu4Y+lWwCo6l+L5gPa8df6/fjUeoqEmPg8713MLjEmgXG1X01/PuyH/7Fm+jKzzZ7659Kt/Ll0KwBP+9ek4YC2nFh/gDK1KpAUk0BMtjxiwqNIikmgTK0KXD92kVpdm3FgkfHvEH3rDr4NK3Pl4BnKN67K7SBjb75TyWLEhhv3vydqPIlSqkAbjACBS7YRuGQbAOVb1qTWgDacXX8Ar1pPkhQTT9ytrHnF3YoiOTYBr1pPEnrsElW7NeWoKS+fFtWp/8Zz/NBjGqmJGffNxYTcpmzjqpxevQ9re1u8a1fgr+9+L9C8cnP32CUcyntiX7YkiaGReHZuzIk35jzUa08MyRhKV7pnC1xqlC8UDUaA1Atns9QZNk1bEvfZ1PT1WnwcUQMy6gznqbOJX/S1scHo4ITzxJnEL51P6tmTub29WS39/keWfv8jAP5tmtLv5Rf5dfXv1KxTjZjoWMJvZr0ouHzhTyxf+BMApct4sWDFF/TuZKwn6ldulV7uj6Mb6NS6j8VmT132/Y8sM+Xl16Yp/V/uya+rN+eZ14qFP7Ni4c/Avbw+T28w+pQvQ9Bl40yjbTq04NKFIPMlkofkM2exKlMavZcnaeEROLRuSeTk6VnK6J8oTdqNYADsmjQk9brxsc61GIboGDAY0Ht7YVXmCVJDLDdx0aqFv7Bq4S8ANGvdmF6DurNp7Vaq165KTExcjosO9g72ODo5EHHrNnq9nmatG3P0z+MAuJdwIzLiDkopXhs+kJ+WmHdys8x+WbSWXxatBaBxq4b0GNiFrWt3ULV2FWKj47h9K2uDz97BHgcne27fikSv19OkdUMC//ybS2evEFC9S3q5NX/+wEsdBhf62VPFo5Gv3Hg0e4BFSqmZgAK6YByu+rZSqjgQCzwH3DvziQGy32HbE+O9ij2BA6ZlQUAd4EfgecD6Pq/PV8d2/EUt/zp8/sc8kk1fuXHPhxs/Y2zAcNw9i9N16AsEX7zOzA2zANi8ZAM7fthGuwEBVGtag7SUNOKiY/lqxOcFGe5DObzjMPVa1uP7vd+TmJDIZyMzOnTn/j6Xt9q/RQnPEvR6uxfXLlxjzibjCeKvi35l8w+bWTB1AW9/+DZdXumCpmnMGjHLUqlkMKQR/93nOE38GHQ6knduwnAjCLueA0m7dI6UI/vzfKlVpWrYde6NlpYGBgPxC2ajxRSeivzUzmNU9a/F5N2fk5KQzLLRGUPHxm38kJkBYwHoNK4PdTs1wdrehqkHvuLAqh1snP2zpcLO4dzOQCr612TE7s9ISUhi9ej56eve2jiDuQHGWR7Xv/s93T55HSs7Gy7sOs75XYEArB23gGcn90dnpSM1KYW14433Bz/ToQH1+7bGkJZGSmIyq4Y+XIMmv1zeEYivfw1e2fMpKQnJ/D7qm/R1/TdNZ0kH48ya2yYtosOnr5m+cuM4V3YaT5BaTR2A3saKHsvHARBy7CLbJizk2OKttP/0NV7aNhOlFCd//IOIs9fNmhuAlmbg9PiF1P1hAkqv48bKncSeu0GFMT24e/wy4Zv/wqVmeWovHImVqyMl29amwuju7Gsx2uyxPhJDGvHfzsZ58ifGr9zYvpG060HY9xpE6sWzpBzOu86wDeiC3qs09i8MwP4F49fbxLw3Cu1ulJmCz9vOrXvxa92UnYfXk5iQyJi3p6Sv+23nDzzn/+8ZlpnZLlNeOw6vIzEhkbGZ8vp150o6+vfK+8XA6HffpnyFchgMGsE3Qnl35PT7ljeLNANRn86hxOwPQacn7rdNpF4JwvnVl0g5c57Evftx6t4Z23p10FJT0WJiuDP1QwBsalbH5dWBaKmpoGlEffQZWnTBXix7WHu27adZq8ZsOPgTiQlJvPtOxgXcH7ct5oXWA7B3sOOLJR9hY2ODTqc4tO8oPy02Ng47dG5Dz4HdANi+cRdrV/5mkTyy27/9II1bNeDn/ctJTEhi2vAP09ct2bqA/m1ewd7Bjo8XzcDGxhql03F0/zHWLFl/n3ct3EZPnsnhYyeIioqmVee+DHm5H906trN0WIVWYZjssiCp/B4rq5QaAdybS3+BpmmzlVJvA8OAYOAyEKRp2hSlVDdgBpAANALOAKuADkAS0EvTtItKKQ9gHWCPscH5pqZpTkopa2AzUBxYlO2+Rq1nuc75mlthsOrqWjqU6WDpMPLdpuubuNPDz9Jh5Cu3n3bxlk9PS4eR7+YGrWKiT4FOWmwR04NW8EnZwjG1e34ZdW0Zv3v8OxsJ99P+5g9Edmlh6TDynfua3ZQvUcvSYeS7yxHHeLJEbUuHka8uRRwluFFLS4eR70of2EF1z0aWDiPfnQg7QENvP0uHka8OhuwiJcIy37lckKxLlC/kk2TkzdHBp0BajXHxQYXib5Lvw1M1TZsFzMq27Avgi1zK/gL8cu+5aTKVjzVNG5ut3E2ME+vcM9a0PAUoerW2EEIIIYQQ4l+jqA9PtfT3NAohhBBCCCGEKMTMMRHOQ9M0zcfSMQghhBBCCCHEoyhMX49REKSnUQghhBBCCCFEngpVT6MQQgghhBBC/NsU9dlTpdEohBBCCCGEEI9BhqcKIYQQQgghhPjPkp5GIYQQQgghhHgM0tMohBBCCCGEEOI/S3oahRBCCCGEEOIxFO1+RlBFvStVCCGEEEIIIcQ/J8NThRBCCCGEEELkSRqNQgghhBBCCCHyJI1GIYQQQgghhBB5kkajEEIIIYQQQog8SaNRiEJEKeWqlBryMOuUUn5Kqd/MF13BUkotUkp1f4TyPkqpkwUZ0+NQSr2tlDqjlFqulBpl6XgKilLqHaWUQyGII/34+CfHxqPuf5lel+fvUkoFKaVKPOp7ClBKxeax/B9tpwf8rpeUUnPz8z3zg1Jql1KqrqXjEPlbv/wbtqvpmPB+jNf7KKV652dMwvKk0ShE4eIK5Gg0KqWs8lonCq0hQBvggqUDeRTK6FE+G94BLN5oRI4PIUTBceW/Vb+8BPzjRiPgA0ijsYiRRuNDUEqtVUr9pZQ6pZR6zbTsZaXUeaXUIaXUt/euUiqlSiqlflFKHTb9NLFs9HlTSjkqpTYopY4rpU4qpXoqpeoopXab8t2slPJSShVTSp1TSj1tet1KpdSrlo7/YSil+iulTphyXGq62jdPKXXEtP2es3SM2cwEnlRKBZr2nz1KqfXA6WzrPjaVdzFtw3OmvHRgvEqvlPrMtM9uV0qVNC1/Wyl12vQ3+cEiGZpk3zamxc2VUvuVUpczXZVVSqmPTfvo30qpnhYM+6EopeYB5YFNwHCghlLqgFLqwr1jx3Rs/WHanieVUs0sGK+PaR9aApwE3jXtfyeUUu+ZyuRWX7yN8cRip1Jqp6lcW1OuR5VSPymlnEzL65m27XFTvemslHJQSv1o2ifXKKX+fIwr8OnHB/Ax4KSU+lkpdVYZe3uVKY7/mXI7qZT65t7ybH+PXMsopSoopbaZcjiqlHrS9JJcf5fJUFPZv5VSlf5hbg9FKdXX9LcNVErNV0o1MG1DO9P2O6WUekYZe0p25fH3CTAt+0sp9YUyw2gGpdQI09/6pFLqnWzrlFJqrmn/3AaUyrQuSCn1kelve0gpVcG0PNfPYaVUfdO+ecy0Lz6dSyzPmsqYtYc4t+Mr2/pc6/TCTOX8/O1oOsaPmY4jD1O5B26XQiDf6hdLyX6cqWyjdZRSo5RSU5Txs7cusNxUl9jf51jL0vOvMkYIzASamV4/3Jx5igKkaZr8POAHcDf9b4/xhKo0EAS4A9bAHmCuqcwKoKnpcVngjKXjv09e3YBvMz0vBuwHSpqe9wS+Nz1uAxwAXgR+t3TsD5lfVeA8UOLedgQWAb9jvGDyFHADsLN0rJli9gFOmh77AXGAb/Z1mdYnYmyc6IGtQHfTOg3oY3r8v0z7Zwhga3rsWgi3zU+mbVMFuJhpP91qytEDuAZ4Zf97FLYfUx1RApgCHDfVHyWA6xgbWiOBiaayesDZwvudAWgItAW+AZRpW/wGNM+tvsicp+lxCeAPwNH0fKxp/7MBLgP1TMtdACtgFDDftOwZIBWo+xg5ZD527gJPmHI4QEa97J7pNUuBjqbHizIdP3mV+RPoYnpsh7GH9X6/KwgYano8BFhQgNuwMvArYG16/hXQH5gGfAJ8CYy/39/HlNN1MuqclcBvBbzv1QH+BhwBJ+AUUAuINa3vSsbx7w1EZdpOQWQcQ/3vxUoen8P39jvT49bAL6bHLwFzgS4YP8/dLHAM5vZ5vOve8UAedXph/SH3Ot6NjO8HfwX49H7bpTD9kL/1S/p2NWP8eR1nmc8pRgFTcovxPsdael6m5/eOWz8KuO6QH/P/WCEexttKqS6mx2WAfsBuTdMiAZRSPwEVTetbA1UyXVxyUUo5aZqW6/0ZFvY38KlS6kOMJ4Z3MJ64bTXFrwdCATRN26qU6oHxxKOGZcJ9ZC2BnzRNiwDQNC3SlNePmqYZgAtKqctAJSDQYlHe3yFN0648YP1lMPYAYzzx+xljA2CVqcwyYLXp8QmMVw/XAmsLIuCHlNe2WWvaNqfvXYXGmNNKTdPSgJtKqd1APYy5/Fus0zQtAUhQxh65+sBh4HullDXGvAMtGSBwVdO0g0qpTzA2HI+ZljthvMCyh0z1haZpe3J5j4YYG/z7TNvTBuMJ1dNAqKZphwE0TYsGUEo1BT43LTuplMrPbXpI07Qbpt8TiPGkby/gr5Qag7HB547x5OnXbK/NUUYptQsorWnaGlO8iab3vt/vgoxj7y+MDaCC0grjieFhU0z2wC3gfYz7WiLwdqbyucUcC1zOVOesBF4rwJjBeHyv0TQtzhTLaiBzr3tzMo7/EKXUjmyvX5np/89Mj3P9HMbYEFuslHoKYyPMOtP7tMTYu9L23v5pZlk+jzVN25OtkyqvOr2wyq2OrwasUkp5Yawb7u1n99suhdXj1C+W8KDj7GHkdqyJ/xBpND6AUsoP4wdQI03T4k0nDmcxXtXNjQ5oeO+EojDTNO28Uqo2EIDxavQO4JSmaY2yl1XGYY+VgXiMVwtvmDPWfKY94HlhEveA9Q+by73lz2I8CesITFRKVdM0LfUx4stvSZkeF5phPfkgx3bSNO0PpVRzjNtkkVJqlqZpSywQ2z339jUFfKBp2vzsBTLXF0qp7ZqmvZ+9CLBV07Re2V5XrSACfoDM+1IaYKWUssPYA1dX07TrSqkpGHvX0j1MmYf5Xbmsy748vylgsaZp47MsNJ6gO2E8EbcjYzvfL+Z/Ey2Xx7l+DivjbSQ7NU3ropTywdibcs8ljKM2KgJHCizaPGT/PFZKbX/QS8wQVn6bA8zSNG296dxqimn5VPLeLoXVP6pfChlXst6m9qBYczvWUu+9h+k80Sa/ghOFj9zT+GDFgDumBmMljFfSHYEWSik3ZZygpFum8luAofeeKKVqmjPYR6GMM2PFa5q2DOMY/QZASaVUI9N6a6VUVVPx4cAZjDc2LzT1jhR2O4AeSqniAEopd9PyHkopnTLej1QeOGepAHMRAzg/wrr6SilfU2Xdk4zeDR1w7z6D3sBeU5kymqbtxDhssBjGk0lLyGvb5GYP0FMppVfG+3iaA4fMEGN+6qSM95UVxzhs57BSqhxwU9O0b4EFQG1LBpjJZmCQyrgXsbRSqlQu9cW9eDPvlweBJpnud3FUSlXEeIx5KaXqmZY7m+rOfcALpmVVgMdpXN7v2Lnn3klRhCm/3GbhzLWMpmkxwA2lVGdTvLaqEMwam8l2oLtSqhQYjynTPjYfeBdYDnz4gPc4B5Q3nbiDsU4paHuAzsp4f6sjGUNE7/mDjOPfC/DP9vqemf4/YHqc1+dwMSDY9PilbO9zFeNn+ZJMn3tmc5/j654cdboZw/sncqvjM//9B2Qqe7/tUljkV/1iKbkdZ5uAUkqp4kopWyDzHA+55ZvbsRaEcYQDwPNk9BI/zN9L/Mv8W68smtPvwOtKqTMYP1APYqzcZmA8cY3E2PN411T+beBL0zArK4wfeK+bO+iHVA34WCllAFKANzBeNfpCKVUMY/yzlVKpGO8/qK9pWoxS6g9gEjDZQnE/FE3TTimlpgO7lVJpZAy3u4Zx27kArxemXmFN024rpfYp483pCcDNPNZtAjZgHHY2F6gA7ATWmIrHYWxQTsI4RK0nxuHGy0zbVgFfaJoWZZ7MsrrPtsnNGqARxvsCNWCMpmlhmU5s/w1OYNw+JYCpmqaFKKUGAKOVUikYhwX2t2SA92iatkUpVRk4YBoeFwv0xbiPZa8vwHj/4+9KqRBN0/yVUi8BK00nIQCTTL0oPYE5Sil7jPt2a4xX5RcrpU5jrEdPkVGXPmrceR47mcpEKaW+xXhvehjG4+dRyvQD5iul3jf9DXr8k1gLgqZpp03H+xbTBaIUYB2QomnaCqWUHtivlGqJcahjbu+RoIxfK/C7UiqOXP4+BRD3UaXUIjIuBC3QNO2YyhiauQbjUMfTGOvuA9news30eZsE3Ovhzutz+COM+9skjPVn9ljOKqX6AD8ppTpqmnYpn9J8GLl9Hn+SaX1udXqhlUcdPwXj3/YOxkalr6n4fbdLYZBf9Yul5HGcHTbVZYcwnteezfSSRcA8pVQCxs9fyP1Y+xZYp5Q6jvF8+d5IhhNAmmn5Ik3TZDhrEXDvhmTxiJTpPkXT1fI1GCeMWfOg1wnLMlWav2ma9rOlYylISqlYTdMs1YsoxEMxNWSsNU1LNPX8bwOe1jQt2cKh/Wdl+mxTGO9hv1BYT/iUUkEYhwJGWDqWgiZ1urCk/9KxJvImPY3/3BSlVGuMwxG2YNlJRYQQ4t/IAePXdVhj7P0eIg1Gi3vV1Atug7F3KMe9rUIIIf57pKdRCCGEEEIIIUSeZCIcIYQQQgghhBB5kkajEEIIIYQQQog8SaNRCCGEEEIIIUSepNEohBBCCCGEECJP0mgUQgghhBBCCJGn/wPiMELQPHvo1AAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"There are no correlated columns presebt in the data ","metadata":{}},{"cell_type":"markdown","source":"### Analysis of Features","metadata":{}},{"cell_type":"markdown","source":"### Age","metadata":{}},{"cell_type":"code","source":"plt.figure(figsize = (16, 7))\nsns.distplot(data['age'])\nplt.title('Distribution Plot of Ages\\n', fontsize = 20)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:43.573210Z","iopub.execute_input":"2021-08-24T17:50:43.573693Z","iopub.status.idle":"2021-08-24T17:50:43.962739Z","shell.execute_reply.started":"2021-08-24T17:50:43.573636Z","shell.execute_reply":"2021-08-24T17:50:43.961890Z"},"trusted":true},"execution_count":10,"outputs":[{"output_type":"display_data","data":{"text/plain":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"We can see the cases are more of age group from 56 to 65","metadata":{}},{"cell_type":"markdown","source":"### Gender","metadata":{}},{"cell_type":"code","source":"\npx.bar(data_frame = data, x = list(data.sex.value_counts().keys()), y = list(data.sex.value_counts()), \n color = list(data.sex.value_counts().keys()), template = 'plotly_dark',\n labels={\n 'x': \"Gender\",\n 'y': \"Number\",\n 'color':'Gender group'\n \n },\n title = 'Number of patients per Gender group')\n","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:45.571029Z","iopub.execute_input":"2021-08-24T17:50:45.571358Z","iopub.status.idle":"2021-08-24T17:50:45.672438Z","shell.execute_reply.started":"2021-08-24T17:50:45.571324Z","shell.execute_reply":"2021-08-24T17:50:45.671211Z"},"trusted":true},"execution_count":12,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"Assigning labels for one hot encoding","metadata":{}},{"cell_type":"code","source":"# since we don't know 0 is male or female and vice versa we are assigning with the same label \ndata['sex'] = data['sex'].map({0:\"0_gender\", 1: \"1_gender\"}) \ndata.head()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:45.676611Z","iopub.execute_input":"2021-08-24T17:50:45.677195Z","iopub.status.idle":"2021-08-24T17:50:45.700136Z","shell.execute_reply.started":"2021-08-24T17:50:45.677143Z","shell.execute_reply":"2021-08-24T17:50:45.698873Z"},"trusted":true},"execution_count":13,"outputs":[{"execution_count":13,"output_type":"execute_result","data":{"text/plain":" age sex cp trtbps chol fbs restecg thalachh exng oldpeak \\\n0 63 1_gender 3 145 233 1 0 150 0 2.3 \n1 37 1_gender 2 130 250 0 1 187 0 3.5 \n2 41 0_gender 1 130 204 0 0 172 0 1.4 \n3 56 1_gender 1 120 236 0 1 178 0 0.8 \n4 57 0_gender 0 120 354 0 1 163 1 0.6 \n\n slp caa thall output \n0 0 0 1 1 \n1 0 0 2 1 \n2 2 0 2 1 \n3 2 0 2 1 \n4 2 0 2 1 ","text/html":"
\n\n
\n \n
\n
\n
age
\n
sex
\n
cp
\n
trtbps
\n
chol
\n
fbs
\n
restecg
\n
thalachh
\n
exng
\n
oldpeak
\n
slp
\n
caa
\n
thall
\n
output
\n
\n \n \n
\n
0
\n
63
\n
1_gender
\n
3
\n
145
\n
233
\n
1
\n
0
\n
150
\n
0
\n
2.3
\n
0
\n
0
\n
1
\n
1
\n
\n
\n
1
\n
37
\n
1_gender
\n
2
\n
130
\n
250
\n
0
\n
1
\n
187
\n
0
\n
3.5
\n
0
\n
0
\n
2
\n
1
\n
\n
\n
2
\n
41
\n
0_gender
\n
1
\n
130
\n
204
\n
0
\n
0
\n
172
\n
0
\n
1.4
\n
2
\n
0
\n
2
\n
1
\n
\n
\n
3
\n
56
\n
1_gender
\n
1
\n
120
\n
236
\n
0
\n
1
\n
178
\n
0
\n
0.8
\n
2
\n
0
\n
2
\n
1
\n
\n
\n
4
\n
57
\n
0_gender
\n
0
\n
120
\n
354
\n
0
\n
1
\n
163
\n
1
\n
0.6
\n
2
\n
0
\n
2
\n
1
\n
\n \n
\n
"},"metadata":{}}]},{"cell_type":"markdown","source":"### cp\nChest Pain type chest pain type","metadata":{}},{"cell_type":"code","source":"\npx.bar(data_frame = data, x = list(data.cp.value_counts().keys()), y = list(data.cp.value_counts()), \n color = list(data.cp.value_counts().keys()), template = 'plotly_dark',\n labels={\n 'x': \"Chest Pain intnsity\",\n 'y': \"Count\",\n 'color':'Chest Pain intnsity'\n \n },\n title = 'Number of patients per Chest Pain intnsity')\n","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:45.701850Z","iopub.execute_input":"2021-08-24T17:50:45.702224Z","iopub.status.idle":"2021-08-24T17:50:45.788604Z","shell.execute_reply.started":"2021-08-24T17:50:45.702174Z","shell.execute_reply":"2021-08-24T17:50:45.787314Z"},"trusted":true},"execution_count":14,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"Though Chest pain is represented as numeric data but it is categorical in nature. We can convert the data to categorical to get dummies. LabelEncoding will not work here as we can see that there is not such relation among the categories that resembles an ordinal relationship.","metadata":{}},{"cell_type":"code","source":"data['cp'] = data['cp'].map({0:\"Intensity_0\", 1: \"Intensity_1\", 2: 'Intensity_2',3:'Intensity_3'}) \ndata.head()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:45.827498Z","iopub.execute_input":"2021-08-24T17:50:45.827861Z","iopub.status.idle":"2021-08-24T17:50:45.855474Z","shell.execute_reply.started":"2021-08-24T17:50:45.827829Z","shell.execute_reply":"2021-08-24T17:50:45.853873Z"},"trusted":true},"execution_count":16,"outputs":[{"execution_count":16,"output_type":"execute_result","data":{"text/plain":" age sex cp trtbps chol fbs restecg thalachh exng \\\n0 63 1_gender Intensity_3 145 233 1 0 150 0 \n1 37 1_gender Intensity_2 130 250 0 1 187 0 \n2 41 0_gender Intensity_1 130 204 0 0 172 0 \n3 56 1_gender Intensity_1 120 236 0 1 178 0 \n4 57 0_gender Intensity_0 120 354 0 1 163 1 \n\n oldpeak slp caa thall output \n0 2.3 0 0 1 1 \n1 3.5 0 0 2 1 \n2 1.4 2 0 2 1 \n3 0.8 2 0 2 1 \n4 0.6 2 0 2 1 ","text/html":"
\n\n
\n \n
\n
\n
age
\n
sex
\n
cp
\n
trtbps
\n
chol
\n
fbs
\n
restecg
\n
thalachh
\n
exng
\n
oldpeak
\n
slp
\n
caa
\n
thall
\n
output
\n
\n \n \n
\n
0
\n
63
\n
1_gender
\n
Intensity_3
\n
145
\n
233
\n
1
\n
0
\n
150
\n
0
\n
2.3
\n
0
\n
0
\n
1
\n
1
\n
\n
\n
1
\n
37
\n
1_gender
\n
Intensity_2
\n
130
\n
250
\n
0
\n
1
\n
187
\n
0
\n
3.5
\n
0
\n
0
\n
2
\n
1
\n
\n
\n
2
\n
41
\n
0_gender
\n
Intensity_1
\n
130
\n
204
\n
0
\n
0
\n
172
\n
0
\n
1.4
\n
2
\n
0
\n
2
\n
1
\n
\n
\n
3
\n
56
\n
1_gender
\n
Intensity_1
\n
120
\n
236
\n
0
\n
1
\n
178
\n
0
\n
0.8
\n
2
\n
0
\n
2
\n
1
\n
\n
\n
4
\n
57
\n
0_gender
\n
Intensity_0
\n
120
\n
354
\n
0
\n
1
\n
163
\n
1
\n
0.6
\n
2
\n
0
\n
2
\n
1
\n
\n \n
\n
"},"metadata":{}}]},{"cell_type":"markdown","source":"### trtbps\nresting blood pressure (in mm Hg)","metadata":{}},{"cell_type":"code","source":"plt.figure(figsize = (16, 7))\nsns.distplot(data['trtbps'])\nplt.title('Distribution Plot of Resting blood pressure (in mm Hg)\\n', fontsize = 20)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:45.857331Z","iopub.execute_input":"2021-08-24T17:50:45.857744Z","iopub.status.idle":"2021-08-24T17:50:46.138074Z","shell.execute_reply.started":"2021-08-24T17:50:45.857710Z","shell.execute_reply":"2021-08-24T17:50:46.136810Z"},"trusted":true},"execution_count":17,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAABCkAAAHUCAYAAAAXwnIHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB2y0lEQVR4nO3dd3xkVf3/8fdnSiZ1k63Z3peFpfciHRFQYUVBQFRQ7CKW39euiCiI+rV+xQ5SLIA0VwVRQUDa0nYpu7CbrWxNtqSXyZTz++PebGYmk7abZCbJ6/l4zCMz55Y5M3Pm5s7nnvM55pwTAAAAAABArgVyXQEAAAAAAACJIAUAAAAAAMgTBCkAAAAAAEBeIEgBAAAAAADyAkEKAAAAAACQFwhSAAAAAACAvECQAsCwZGaPmlnO5lA2s1vMzJnZ7JSy2X7ZLbmql1+PnL43A8HMNpjZhlzXoz/MbIGZ3Wdm2/12UJfrOg0kM7vGf12n5rouHfbmO2dml/vbXD54NeuffDl2oG/M7FYzqzGzkpSyU/3P8JocVm3UM7Mj/c/hQ7muC4C9R5ACQM74JxKpt6iZ7TCzF83st2Z2jpkFB+m5h92P4A7ZAiT5riNwknFrNLMXzOwrZlY0CM85ZD/8/HZ6v6S3SvqbpG9KuqEP22W+Jwkz2+2/X5ebmQ1uzdPqknc/3oF8Y2ZHS3qfpBucc825rs9w4P+/7fF/Vsr/iFP35bmccy/IOxZ/y8xK92VfAHInlOsKAIC8H3SSFJRUIelAeSeBV0h63swudc6tztjm/ZKKh6yGXX1Z3o/QLTmsQ3dy/d705FZJGySZpOmS3inpOkmLzexE51wsh3XbF3MkLZL0G+fcR/Zi+47vQFjSfEnnSzpF0lGSrhyQGu67n0m6Q9Ibua4IkEPXSWqQ9IuM8mclHSBp55DXCJm+I2mppKskXZ/jugDYCwQpAOScc+6azDIzq5T0f5IulPRvMzvKOVeTsk1Ofyg557ZJ2pbLOnQn1+9NL25xzj3a8cDMviZpmaRjJL1HXhBjOJrq/926NxtnfgfM7E2SHpf0CTP7gXNu/b5Vb98553aKH2AYxcxsP0lvlvRb51xr6jLnXIuk13NSMaRxzj1rZq9L+qiZ3eCcS+a6TgD6h+EeAPKSc65a0sWSHpU0Q9JXUpdny7tgnsvM7Cl/2EibmW0ys4fM7CJ/nVP97WZJmpXR1f6WlH05/zkm+0NPtvhd8S/3l/c45MLM9jez+/2u+81m9oSZvSXLet2O8882XMGv+2X+w/Updd/Q03vjlwfM7GNm9pyZNfn1es7MPm5mXf4fpLwHE8zs12a2zR+Ss8LMPpDtdfeXH+y51394TG/rm1nEzL5kZq+YWYuZNZjZf83s3RnrXSOp44f9ZRmf8+V9qZt5Y5vvMW/sedTMNprZz81sSsZ6TtJj/sNvpDzPNX15nmycc0/K+8Fjko7MUrdjzexu8/JftPvt/FdmNjXLunP9z2+NmbX6bfIVM/ulmY3313lU0u/8TX6X8X7N9tfJ2lb3pp34n+M1ZrbOX3e9mX3bL3d+ffqlr9+5XvbRp888Zf0pZnajed3Z28077txrZl0+M3/9MjP7oZltNu/49LqZfU79PB+zlPwHZna8mf3bzOrNG0L1kJkdlWWbPZ+fmb3HzJb6x4ENKesUm9mXzWy5/x42mdnTZnZJlv2Z9XK8TVn3EDP7k/8+pQ7r+7GZhVPW6/a4at3kfLDOYQIFZna1ma3yn+OWlHWmm9nPUtrbLjNbYt7Qjf74oLzv5J17Ub+QeUPbqvw6bDKz75pZQV+fPOX9mWNmV5rZSv993+Dv2/z1LjSzZ/3PsMZ/7V2G1Fnnd7fSzG42s2p/m6fM7CR/nRIz+77/Xej4Xl/Yz/dtn5jZWWb2pF+33eZ9z/fvqb3I6/U1U9KZQ1lXAAODnhQA8pZzLmlm35Z0qqRLzOyzzrmeEkJeJ28YxnpJd0mqlzRF0tHyemTcKW+owTclfcbf5scp2y/P2N84Sc9IapL3QzopqboPVZ8j6WlJr0j6lV+HiyQ9aGbvcc51OcHth29KeoekQyX9RFKdX16XffU0t8vrrbBJ0m8lOXnDCn4u6URJl2bZpkLSk5LaJd0tKSLvvbzZzJLOuYHo+dCRd6HHZJ/+yfxD8oZBvC7pRnnDWi6QdKeZHeac6whmPerX/dOSXpI3RrnD8l4rZPZ2Sff4dbtb0kZ5wYKPq3NoSkcQ5JuSZssLHj3mP7dS/u6rtCEwZvZBSb+WFJW0RN7nuUDShySda2bHdfSmMe/H9XOSxkh6wH9NhfLa6PvkDeHYJekWeW1osaS/KP09qutDHSvUx3bi/5C6R9LbJFX5dQhLulzeUK+9sc/fuX5+5jKzOZKekNeL5hFJf5IXUL1Q0tvM7F3Oub+lrB+R9LC849FLkv4g7337urw2vTeOlXfM+7e878N8eUOoTjaztzjn/ptlm/8n74fbXyX9R1K5X78K/3UcLulFSTfLC56cJemPZnagc+5rKfvpy/FWZnaIvK73Tl57XS+vPc6X9AlJX1NGG99L9/jP/aC873uN//xHSPqnvOP5Q/KO5RPkHUefMLPznXMP9PE53iwpIe//Qn/9UdJJfv0a5OWv+YKkSZL6G/T9X3n/F/8q77WdJ+/zKDCz3fKGIt4v6b/yPutPyhtO+fEs+6qQ991tlNeGx8m7QPCQmR0v7/s0Tl6unbCkS+Qdbzc55/bmfegXM7tY3nvXJq+dbZN0grzv+0s9bPqk//dMeZ87gOHEOceNGzduObnJO2l1vawTkXcC6yTNSSl/NHNbeT+2NksqzrKfCRmPN0ja0FvdJN0mKZRl+S3+8tkpZbNTtvt+xvpH+a+jVtKYlPJr/PVPzfIcHfu7pbfnzlie7b25xN/mRUmlKeUlkp73l72nm/fgt5KCKeWLJMUlrezHZ/1ottcp70dNtb/sfT19PvJ+EDl5P7ZDKeWT/PWdpBN6e//6UNdSvy0lJJ2UseyL/j7/mVF+ql9+zUB8BySd7D9/VNKUlPL95AUC1kialrHNGf4296WUfcp/jk9neY4SSUUpjy/31728m7pmbav9bSfygiNO3nCWgpTyCnnBJyfp0T6+f7PV/+9cl9e5l5/5Q375VzPKT/Bf9y6lf9e+4q9/j6RASvkcSbv701ZT2puTdGXGssV+eVXG83R8fs2SDs+yz1v85V/IKC+U9A95QdrDUsr7dLyV9AN/v4uzrDc2o44ddZjdw2u+JqP8Ub/8ZXU9zofkfVfaJJ2SsWyqvJxC2yRF+vCel/if6yu9fCbd1e8FSeMy9rfGb3OT+/i5d7w/G5Ty/Zf33dnpf7Y7JB2QsiwiaaW8Y8mkbr67v8z4HDq+o7vlBUIKU5ad5C+7ry919rfZ4G/zY78dZrt1rHNqynZl8r6/UUmHZuzzhpT6Z2sv5f6yZ/taT27cuOXPjeEeAPKacy4q72RYkib2YZOYvJO+zP3szVj6dkn/45yL93O7eknXZjz/8+q8cnr+XtRlX33Q//sl51xTSr2a5f0Ik7wr8ZlaJH3OOZdI2WalvKtUB1j/s6dfbl6382+a2U3yTp4nyUs6d0cfXoPz67PnM3FerpJv9fAa+muxvCuHd7quV6J/IO9k+kwzmzkAzyVpT1f8a8zsOjO7U96VcZPX/lJzn3xc3tXMTzvn0pK2Oucelnel+lwzK8t4itaMx3LONbuMcfX7oD/t5DL/79ecc+0p69ep83Psr339zvXrMzez6ZLeIi+J6PcynvcpdV6RfmfKog/I+6H/BZcyRt55vTN+2tsL7MYaeT2hUp//L/J69MyX94My06+dc8tSC8wb9vNeSc875zJfT5u8Y4TJ64mVqj/H22xtsNYNXL6Ar2d53rdJmifp/5xzj6UucM5tlffZTZYX4OvNNHm9EfY2F9EXnXO7U56/WV77DMgLqPXHt1K///53Z4m8nmW/cM69lrIsKq9XS4G8xJ6ZWiR9PuNz+KO8gMxYeceatpT9/Vfe9+GwftZZ8nq2faOb26ws6y+W9/39g3Mus9fEt9VDLy/nXL284NSAHacBDB2GewAYDvo0HEDeCd+nJK00s7vknag/7Z+s7I0NLiVZZz+86JxrzFL+qLwfaIdr6BNEHiHvB9KjWZY9Ju+HxuFZllU55xqylG/y/46VNxymry5Lud8s72rvPZJ+6HqY2cP/0T1f0hbnXLbkdI/4f7O9hv46ImOfezjn4mb2uLwr+Idr4Ga6+EbmU0m6wjn3u4zy4/2/p3Qznn6SvB9S+8m7crtEXnb7G83sLHlX/5+U17uht+9Tf/SnnRwury0+lWX9J/by+ff1O9ffz7yjnf23m3b7iLwf/YdLui2l/W5yzq3tpp6ZbaAv/tvNj/xH5Q0hOVyd+VI6PJtl/aPltZvucql05I1I/ZHb1+PtnfJ+nN5vZnfLC8A92c37sC+yva6O78usbl7XAv/vAfJ6aPVkvP+3tv9Vk+T1WMuU+v3Y1311JO19IcuyjoDG9CzLVmd+d5xzCTOrllTinFvXzf6O7WtlU8xxzm3ItsC8PDSnZBR3fM+6HBecc01mtlxeD5bu7JZU2d9KAsg9ghQA8pqZFcq7Iil53Vh78llJ6+RdsfySf4ub2QOS/p9zbk0/n357P9fv0F3eio79le/lfvdFuaTdqVeuO/g/wnbK+4Gbqa6b/XX0ZAj2sx6nuZTZPfqh4z3r7ipmR3nFXuw7l88lSXLOdSS8K5H3w+omSb80s43OudQfzh0/lD7fyy5L/f1uNLNj5HWnPludV/Y3mdn/Ouf29gp+prpuyrO1k462mK2HUl9yvmSzr9+5/n7me7t+b/Xsr7153dmeq6NdHe3fupPaI6ZPx1vnzbRwkqSvyssf8z5JMrNVkr7pnPtTD8/XHz29rt4SPfalR1hHT5DCPtcohd/bIdPeHkezBd7jfVgWzrKsuyB+vJdlQ/EborfvTW/HiyJl6cEDIP8x3ANAvjtR3slQdXdXYDo45xLOuR875w6Vd/XkXZLuk5dU7B9+4rr+2Nsrzd1duZns/0098eu4CprthK9iL58/m3pJ4ywlk34HMwvJSySX7Up4vuh4zyZ3s3xKxnrD5bnS+EMw/i3pXHk/XG41s+IsdSt3zlkPt8dS9vmac+4ieT/YjpL3YzIg6SdmdsVAv4Y+aJDXFrO1+b296tmf71w2/f3M93b93urZX3vzurMd1zrW+1Ev7eq0PTvpx/HWOfe0c+7t8noMvEnesJ5KeQk535xSj70+HnbTM6jjdS3u5XV9s6d9+zp61Y3vcS0MpI7/Sd21826PF+bNWFWhzs8NwDBCkAJA3vJPMr7qP/xjf7Z1ztU45+51zr1bXtfreZIOSlklof5fveqrI7LkBJA6u6Wmjgfv6Do8I8v63Y1T7hgD3p/6L5N3zD85y7KT/X292I/9DSm/O/JaSdPMbEGWVTp+PKW+hr15n6TOz+fUzAX+D+uOcf6D9n45516W9Bt53bM/m7KoI5t+tlwDve0z7px7wTn3XXmJVCVvhoMOe/t+9VdHWzwhy7IT93Kf/fnOdVen1PX36OYz71j/xG6CLWnt0W+/a+S133k91LO/TrQs0wer76+7w7PyAgT9bldSn463HetFnXNPOeeulnSVX7w4ZZW9OR72ZK+/L1lsk9ebb+EA7At9s+d7lrnAz3NzWA/bLpQ3VHT5gNcKwKAjSAEgL5nZJHmJFE+VNwb8+l7Wj5jZm7KUh9U5XKQlZdEuSROzzR0/AMolXZ1Rj6PkTfFZL+9qY4eOcdQfSP2xY2YzMveRoiORaH8Sgt3s//1O6pV5//4N/sOb+rG/XLhZ3knn981szw9pM5sgbxrHjnU61Mq7atzfxGn3yxvLfImZHZex7DPyZmP4t/On+RxE35aX1f5/zKxjzPrP5CUr/JGZ7Ze5gZkV+F3rOx4faWbZuvx3XIHM/E5Ig59o7jb/77f9aWUlSX49v559k1715zuXzf3qx2funNss6V/y8lR8JuN5j5WXYLI243l/J++867upgQV/KtOrtHcWyJvGM/X5F8sb279G3hSUvfJz7/xB0lFm9vXU71fKfuf5de3X8dbMTujmOJutDXYcDz+csd+D5eW16K+/yAtuftLM3pptBTM7PqO3UlZ+T43HJU0ws/l7URf031/kfX8vNbNDM5Z9TT33run4Hv9nEOoFYJCRkwJAzqUkNOvonnmgvCsnBfJOWi/tJlt8qiJ5c96vkZc4bKO8scNnykuKtiQ147mkh+WNvf6HnxQvKukl59xfB+AlPS7pQ/6PlSfldf2+yH99H01NMOicW+o//8mSnjWzR+SdvJ8rL8lhtiuKD8vLSfAbM7tH3vz2dc65n3VXIefcH/0fL++WtMLM7pf3A/4d8n6A3emc+8M+verB97+SzpF35fUlf+x7sbzx5pMkfc85tyfBmp9Ybamkk8zsD5JWy+stsMTvqZCVv90HJf1Z0mNm9md5gbIj5c3osF3SRwfjBWbUY4uZ/VLej7MvSPqyc+51v243y/sc/yHvdYXlBRdOkne1d39/N++T9FEze0Lej7VaeVe5z5XX5n+c8pRPy/vB+Bl/toeOMf7/tw/JZ7O5TdLF8nJkvGpmS/z6v0vSc/KugPZ3xoc+f+ey2cvP/GP+c33fzN4iL5nhDHntMSnpAxkJCX8g7/v2LkkvmtlD8o537/brf14/X7PkTQ36AzM7R9JL8pJzvlPerAYf7CapZneulBf0uFbS+/w2Uy1vqs4D5B0vL5G0Xv073n5B0ulm9l9/2yZ5x/hz5LXHX6fU4S/ykule4s+gslReu17sL3t3P16PnHMxM3unvGPp383sKXlX1lvkfVZHS5orr720dLefFPfI+/zOkhcEwiByzjWY2Scl3S7pKT9B6zZ5vbAOlZes9RRlP168Rd7x/i9DVF0AA8nlwTyo3LhxG503dc5x3nGLypvr/QV5Xd3PVsrc7RnbPir/4pb/OCzvZPhBeT8u2uT9WHtG3o+JgoztSyT9QtJmeUnAnKRbMur2aA91v0UZ87PLu6rq/GUHyDs5qpV38vukpLO62VeF/3pr/PfgVUkfSd1flm0+J+k1f30nbyaSrO9NSnlA3lXX5/06tfjv9Sezvc89vQfZXn8vn/Wj/vqn9nH9DamvKaW8UNJX/PeoVV6A5glJl3Szn/mS/iqvl0DSr8PlfazD0fKuhO+QNx3tG36bmZpl3VP9fV+zN9+BHpZXypsFpVlSZUr5wf5nsNFvA7v99+RXkk5PWe9Yv84v+eu0yvtx9TtJB2V5vrPlBSua1Pm9nO0vuybbZ7g37cT/HK+V96M16n/e18mb5tFJur+P79+e74j6+J2TdHl37aA/n7m//jR/+UZ//Z3yemUc3c36YyT9UN7sCG2SXpf0/+T9UM76Xe9mP3vam7xEq/+WN36/UdI/sz1/d59fxjoF8oIVT8m7gh3134OH5fUYGe+v1+fjrbwfi7+TN91wvby2vEretKuzstRhhrwZQTra63PyAi97XnO2Y0sv79ckeT3GXvXbRpO8YMjd8mZhCfXxfS+QF7hZ2tdjQE/166kt9uf71Nvn293zqOfv7gZlOQb39T3Psq8e/1+oh/8R8gJaT/mfXa287/n+kv7mb1ORsX6533b6dBzhxo1b/t3MOScAAIBcM7Mz5f3IvsE59+Vc1ydfmdmp8rqxf9M5d01OKzPKmNmX5Q0/PMI5tyzX9Rmt/CFJ6+QFxKZkLPuUvCDYSS6ldx2A4YOcFAAAYEiZ2dQsZePVmR+ltxwSQK78SF7vkWtzXZHRwMwqMnOGmJnJy0kxUxnHCj//yZcl3UOAAhi+yEkBAACG2g/9RHhPyRsmMF1el+5xkn7lnHu2p42BXHHOtZnZ+ySdZmYlzrnmXNdphDtO0p1m9k95w0ZK/bLDJG2SN8wl1Wx5eU5uGaL6ARgEBCkAAMBQu1edCWIr5OU0WCFvhpl8n2UGo5xz7nF5yU4x+FbJyz3xJklvlffbZbO84RzXO29mmj2cl7D1miGuI4ABRk4KAAAAAACQF8hJAQAAAAAA8gJBCgAAAAAAkBcIUgAAAAAAgLxAkAIAAAAAAOQFghQAAAAAACAvEKQAAAAAAAB5gSAFAAAAAADICwQpAAAAAABAXiBIAQAAAAAA8gJBCgAAAAAAkBcIUgAAAAAAgLxAkAIAAAAAAOQFghQAAAAAACAvEKQAAAAAAAB5gSAFAAAAAADICwQpAAAAAABAXiBIAQAAAAAA8gJBCgAAAAAAkBcIUgAAAAAAgLxAkAIAAAAAAOQFghQAAAAAACAvEKQAAAAAAAB5IZTrCgym+vp6l+s6AAAAAACArsrLyy2zjJ4UAAAAAAAgLxCkAAAAAAAAeYEgxQhXVVWV6yogD9AO0IG2gA60BUi0A3SiLUCiHaBTLtsCQQoAAAAAAJAXCFIAAAAAAIC8QJACAAAAAADkBYIUAAAAAAAgLxCkAAAAAAAAeYEgBQAAAAAAyAsEKQAAAAAAQF4gSAEAAAAAAPICQQoAAAAAAJAXCFIAAAAAAIC8QJACAAAAAADkBYIUAAAAAAAgLxCkAAAAAAAAeYEgBQAAAAAAyAsEKQAAAAAAQF4I5boCAAAMpltWNee6ClldvrAk11UAAADIO/SkAAAAAAAAeYEgBQAAAAAAyAsEKQAAAAAAQF4gSAEAAAAAAPICQQoAAAAAAJAXhixIYWZnm9kqM1tjZl/KsjxiZnf6y5ea2Wy//BgzW+7fXjKz8/u6TwAAAAAAMHwMSZDCzIKSbpR0jqRFki4xs0UZq10hqdY5N1/SjyR91y9/VdJRzrnDJJ0t6VdmFurjPgEAAAAAwDAxVD0pjpG0xjm3zjnXLukOSYsz1lks6Vb//t2SzjAzc861OOfifnmhJNePfQIAAAAAgGFiqIIU0yRtSnm82S/Luo4flKiXNF6SzOxYM1sh6RVJH/OX92WfAAAAAABgmAjlugJ94ZxbKulAMztA0q1m9mB/91FVVTXwFRsmRvNrRyfaATqMtrZQXRPMdRWyqgokcl2FUdcWkB3tAB1oC5BoB+g0WG1hwYIFPS4fqiDFFkkzUh5P98uyrbPZzEKSyiXtSl3BOfeamTVJOqiP+9yjtzdipKqqqhq1rx2daAfoMBrbQmWyOddVyGrBgpKcPv9obAvoinaADrQFSLQDdMplWxiq4R7PSVpgZnPMrEDSxZKWZKyzRNJl/v0LJD3inHP+NiFJMrNZkvaXtKGP+wQAAAAAAMPEkPSkcM7FzexKSQ9JCkq62Tm3wsyulfS8c26JpJsk3W5mayTtlhd0kKQTJX3JzGKSkpI+4ZzbKUnZ9jkUrwcAAAAAAAy8IctJ4Zx7QNIDGWVXp9xvk3Rhlu1ul3R7X/cJAAAAAACGp6Ea7gEAAAAAANAjghQAAAAAACAvEKQAAAAAAAB5gSAFAAAAAADICwQpAAAAAABAXiBIAQAAAAAA8gJBCgAAAAAAkBcIUgAAAAAAgLxAkAIAAAAAAOQFghQAAAAAACAvEKQAAAAAAAB5gSAFAAAAAADICwQpAAAAAABAXiBIAQAAAAAA8gJBCgAAAAAAkBcIUgAAAAAAgLxAkAIAAAAAAOQFghQAAAAAACAvEKQAAAAAAAB5gSAFAAAAAADICwQpAAAAAABAXiBIAQAAAAAA8gJBCgAAAAAAkBcIUgAAAAAAgLwQynUFAAB9d8uq5n3avromqMrkvu2jO5cvLBmU/QIAAGD0oCcFAAAAAADICwQpAAAAAABAXiBIAQAAAAAA8gJBCgAAAAAAkBcIUgAAAAAAgLxAkAIAAAAAAOQFpiAFACAH9nU62X3V03S0TCcLAAByhZ4UAAAAAAAgLxCkAAAAAAAAeYEgBQAAAAAAyAsEKQAAAAAAQF4gSAEAAAAAAPICQQoAAAAAAJAXCFIAAAAAAIC8QJACAAAAAADkBYIUAAAAAAAgLxCkAAAAAAAAeYEgBQAAAAAAyAsEKQAAAAAAQF4gSAEAAAAAAPICQQoAAAAAAJAXCFIAAAAAAIC8QJACAAAAAADkBYIUAAAAAAAgLxCkAAAAAAAAeWHIghRmdraZrTKzNWb2pSzLI2Z2p798qZnN9svPNLMXzOwV/+/pKds86u9zuX+bNFSvBwAAAAAADKzQUDyJmQUl3SjpTEmbJT1nZkuccytTVrtCUq1zbr6ZXSzpu5IukrRT0rnOua1mdpCkhyRNS9nuUufc80PxOgAAAAAAwOAZqp4Ux0ha45xb55xrl3SHpMUZ6yyWdKt//25JZ5iZOeeWOee2+uUrJBWZWWRIag0AAAAAAIbMkPSkkNfzYVPK482Sju1uHedc3MzqJY2X15Oiw7skveici6aU/c7MEpLukfRt55zLVoGqqqp9ewXD2Gh+7ehEOxgZqmuCA7CP6gGoSVdVgcSg7HdfDcR7NlJ11xby9bPE4OD/AzrQFiDRDtBpsNrCggULelw+VEGKfWZmB8obAvKWlOJLnXNbzKxMXpDifZJuy7Z9b2/ESFVVVTVqXzs60Q5Gjspk8z5tX11TrcpJlQNUm3QLFpQMyn731b6+ZyNVT20hXz9LDDz+P6ADbQES7QCdctkWhmq4xxZJM1IeT/fLsq5jZiFJ5ZJ2+Y+nS7pP0vudc2s7NnDObfH/Nkr6o7xhJQAAAAAAYBgaqiDFc5IWmNkcMyuQdLGkJRnrLJF0mX//AkmPOOecmVVI+rukLznnnuxY2cxCZjbBvx+W9HZJrw7uywAAAAAAAINlSIIUzrm4pCvlzczxmqS7nHMrzOxaMzvPX+0mSePNbI2kz0nqmKb0SknzJV2dMdVoRNJDZvaypOXyemL8ZiheDwAAAAAAGHhDlpPCOfeApAcyyq5Oud8m6cIs231b0re72e2RA1lHAAAAAACQO0M13AMAAAAAAKBHBCkAAAAAAEBeIEgBAAAAAADyAkEKAAAAAACQFwhSAAAAAACAvECQAgAAAAAA5IUhm4IUAICBlkg67Y4mtSuaVNJJZWFTWTig0rApFLBcVw8AAAD9RJACAJD36tuTWr6zXS/sjOmFHe1aXR/XzraE6qJOrpttSkKmOWNCKgpKU0uCmlYS1LTioErCdCIEAADIVwQpAAB5xzmnV3bHdN/6Vj24qU2v18X7vY/muNOru2Pegx2xPeWzSoM6aFxYB48Lq7IoIDN6XAAAAOQLghQAgLyxui6mu9a16v71rVrT0P/ARF9sbEpoY1NCf3+jTRMLAzpsfFgnTI5obIQeFgAAALlGkAIAkFPOOT1V3a6fvNKof26O9nv78gLThMKAgmZqiiXVGHNqinU/DCTVjrak/rUlqoe3RHXwuLBOnhLR3DFBelcAAADkCEEKAEBOJJ3T399o009eadTzKcMxsjFJ+1eEdMTEAh05oUCHTwhrWklQYyMBhbMkyEw6L6Hmit1x/W5Vk7Y0J7SlOaGtLcnsdZH00u6YXtod09TigM6YVqjDJ4QVIFgBAAAwpAhSAACG3BPbo/riM3VaUdv9kI5wQDp9WqHeOadIZ00vVEU/hmMEzDShMKhTpga1vrHzOeqiSb1aG9Oru2Oqqo8rkaW7xdaWpG6vatEjW4N6+8xC7V8RomcFAADAECFIAQAYMm80xXX1cw26f0Nrt+scNTGsyxeW6O0zi/oVmOiLikhAJ06O6MTJEbXGnZbtbNd/t0e1LUsPiy3NCf3qtWbNHxPSubMKNauMf5kAAACDjTMuAMCga4s7/fCVRv30lUa1JbKvc9aMQn36oFIdX1kwJD0XikKmEyZHdHxlgdY0xPX4tna9ujvWJZfFmoa4fvRKk46dVKDzZhUyhSkAAMAgIkgBABhUL+9q10cer+12GtEL5hbpc4eUadHY8BDXzGNmWlAe1oLysHa0JvTAG21atqtrjoylNe1aURvT+bOLdMSEMENAAAAABgFBCgDAoEgknf7v1SZdt6xBsSz5Kg+fENYNx5Tr2MrI0FeuGxOLgrpsYYlOb4rrrxvbtLo+PbDSFHO6vapFz+0I6cK5RRpfGMxRTQEAAEYmghQAgAG3oTGuj/+3Vk9Xt3dZNrEwoKuPHKNLFxTn7ewZM0pD+sSBpVpVF9O961tV3ZoeZXm9Lq7vLm/Uu+YU6ZhJQzM8BQAAYDQgSAEAGFAPbWrThx/brYZY16kz3jO/WN85tlzlBcMjr8PCirA+f2hID2+J6p+b29JmA2lPSn9a26rX6uJ697wiFYeGx2sCAADIZwQpAAADwjmnH77cpG+/2NAl+eS4SEA/PqFC580uyknd9kUoYDprRqEOmxDWXWtbtLYhPfPn8l0xbWiM670LSjS/nH+rAAAA+4LLPgCAfRZNOH3g0Vp9K0uA4sxpET31jknDMkCRqrIoqCsPLNWFc4uUOcFHXbvTjSua9OAbrUq6rj1IAAAA0Ddc8gEA7JNdbQnd9Hqztrak520ImnTt0eX6xKKSEZOzwcz0pskRzR8T0u1VLdrc3Nmrwkl6aHNUm5oSeu9+xQz/AAAA2AucQQEA9trW5oR+8kpTlwDF2Ijp3reM1ycPLB0xAYpUlcVBfebgUp0+NaLMV7eyLq4fvNSkrc2JrNsCAACgewQpAAB7ZV1DXD99tbFLgsxFY0P6z7mTdMrUwhzVbGiEAqbzZhfp44tKVBpOD1Xsiib1o1ca9fyOrrObAAAAoHsEKQAA/bZid0y/WNmktozOAufNKtQ/3zZRs8tGz2jC/SrC+p9DyjSrNJhWHktKv69q0d82kqcCAACgrwhSAAD65dmadt30erNi6SM89LFFJbrltHEqzcwqOQpURAL61EGlOqGyoMuyf2+J6rbVLWpPEKgAAADozeg7kwQA7LWnq6P645oWZcQn9NaZhfrOMeUKjMD8E30VCpjePa9YF88rUijjbVi+K6YbVzSpsT3znQMAAEAqghQAgD55tqZdd61tTSszSRfOLdJbpheOyASZe+O4yoiuPKi0S56KjU0J/fCVRm1rIaEmAABAdwhSAAB69cKOdv1pTYtSBywETbpsv2K9aXIkZ/XKV7PLQvrswaWaXJT+b7Y26vTTV5q0riGeo5oBAADkN4IUAIAevbSrXX+o6hqg+ODCEh02oWsOBnjGFwb16YPLtLA8PYloa8LpFyubtGJ3LEc1AwAAyF8EKQAA3Xp1d0y3rk7PQRGQ14PiwHHhXFVr2CgKmT5yQEmXhJqxpHTT6816roYpSgEAAFIRpAAAZLWuIa5bVjUrmdKFwiS9d79iHTKeHhR9FQyYLpxbpHNmFKaVJyX9YU2LHt3alpuKAQAA5CGCFACALra3JPTb15sVzwhQvGd+sY5giEe/mZnOmlGoC+YWKTO96P0b2vTgG61yjilKAQAACFIAANLUtyf1q9ea1BJP/9H87nlFOnoSAYp9ceLkiN6/X7GCGZGKhzZH9cCmNgIVAABg1CNIAQDYoy3h9JvXmlUbTf+x/NYZhTq+klk8BsLhEwr0kQNKVJDxH/hfm6P62xsEKgAAwOhGkAIAIElKJJ1uWdWszc2JtPLjKwt05nQCFANpYUVYnziwVIXB9PKHt0S1ZCOBCgAAMHoRpAAASJLuWd+q1+viaWWLKkJeHgXLzKSAfTW7LKRPLCpVUcbYj/9sjeq+DeSoAAAAoxNBCgCAntwe1VPV6dNhzigJ6rKFJQoSoBg0M8tC+sSBJSoOpb/Hj29r11/pUQEAAEYhghQAMMqtrY/rnvWtaWXjIwF95IASRTIzPGLAzSj1AhUlGYGKR7ZG9a/N0RzVCgAAIDcIUgDAKLa7LanfrWpWMuWCfUFA+tD+JSrLzOyIQTO9JKRPHljaJVDxwKY2Pbq1LUe1AgAAGHqcgQLAKNWecLp5VbOaMqYavXRBsaaUBLvZCoNlaklQH1tU0iWZ5v0b2vR0NT0qAADA6ECQAgBGIeec/rS2pctMHmdNj+jQ8QU5qhVmlIb0kQNKu0xPetfaVr24sz37RgAAACMIQQoAGIUe396uZTtjaWUHjwvrrBmFOaoROswdE9IV+5coNR2Ik/SHqhatro91ux0AAMBIQJACAEaZjY1xLdmQnihzclFAly4oVoCZPPLCwoqwPrCwJO2fdMJJN7/erK0ZvV8AAABGEoIUADCKtCakW1Y3K5GShqIwKF2xf4kKmckjrxw0Lqz3LChOK2tLSL96rUm10WSOagUAADC4CFIAwCiRdE5/qw6pNpqeKPOS+cWaWESizHx01MQCnTsrfQhOfbvTr1Y2qSVOoAIAAIw8BCkAYJR4dGtUa1rSgxEnTykgUWaeO31qRCdNTv+MtrcmddPrzYonXTdbAQAADE8EKQBgFFjXENffNrallc0sDeq8WUU5qhH6ysx0/pwiHTIunFa+tiGhu9a2yjkCFQAAYOQgSAEAI1xLPKnbVjcrdXBAcch0+X4lCgXIQzEcBMz03gXFmlOW3hPm2R3tenRbNEe1AgAAGHgEKQBgBHPO6a61raprT7/afun8Yo0r5F/AcFIQNH1o/xJNzPjclmxo08papiYFAAAjw5CdoZrZ2Wa2yszWmNmXsiyPmNmd/vKlZjbbLz/TzF4ws1f8v6enbHOkX77GzH5qxtx5AJDq2R3tWr4r/QfsqVMiOjBj6ACGh5JwQB/av0SFKR0qnKTbVjdrewtTkwIAgOFvSIIUZhaUdKOkcyQtknSJmS3KWO0KSbXOufmSfiTpu375TknnOucOlnSZpNtTtvmFpA9LWuDfzh60FwEAw8yO1oTuXdeaVlZZkNTbM2aLwPBSWRzUZfuVKDUq35aQfvt6s5pjzPgBAACGt6HqSXGMpDXOuXXOuXZJd0hanLHOYkm3+vfvlnSGmZlzbplzbqtfvkJSkd/rYoqkMc65Z5yXNew2Se8Y9FcCAMNAIul0e1WLoim/WcMBafHkOHkoRoADxoa1eHZ6sGlnW1K3rm5RkkSaAABgGAsN0fNMk7Qp5fFmScd2t45zLm5m9ZLGy+tJ0eFdkl50zkXNbJq/n9R9TuuuAlVVVXtf+2FuNL92dKIdjAzVNcHeV5L02K6g3mhKP8SfMT6m8QVO1TXVg1E1VQXyc7hBX9+z4Wb/oHRIWUgvN3a+vtX1cd39+i6dMr5vn0V3bSFfP0sMDv4/oANtARLtAJ0Gqy0sWLCgx+VDFaTYZ2Z2oLwhIG/Zm+17eyNGqqqqqlH72tGJdjByVCabe11nXUNcT9c2pZUdNC6ks+aXq2ZHjSonVQ5K3RYsKBmU/e6rvrxnw9X7JzrduKJJ6xs7gwpP1YZ0YGV5r3lHqmuqu20L+fpZYuDx/wEdaAuQaAfolMu2MFTDPbZImpHyeLpflnUdMwtJKpe0y388XdJ9kt7vnFubsv70XvYJAKNKNOH0h6oWpXb4HxM2XTyvWOQWHnlCAdPlC0tUFk7/bP+wpkW72ugNAQAAhp+hClI8J2mBmc0xswJJF0takrHOEnmJMSXpAkmPOOecmVVI+rukLznnnuxY2Tm3TVKDmR3nz+rxfkl/GeTXAQB57S8bWrUrmp488dIFxSoNM93oSFVeENBl+5Wk/UNviTvdsqpFsST5KQAAwPAyJGetzrm4pCslPSTpNUl3OedWmNm1Znaev9pNksab2RpJn5PUMU3plZLmS7razJb7t0n+sk9I+q2kNZLWSnpwKF4PAOSj12pjeqq6Pa3spMkFWljBdKMj3fzyUJdZWzY1J3Tf+tZutgAAAMhPQ5aTwjn3gKQHMsquTrnfJunCLNt9W9K3u9nn85IOGtiaAsDw0xJP6o61LWllEwsDOndWUY5qhKF22tSI1jcm9Mru2J6yp6rbNXdMSEdNLMhhzQAAAPqO/r8AMALcs65V9e2dXftN3jCPgiB5KEYLM9Ml84s0oTD9X/uf17VoJ/kpAADAMEGQAgCGueU72/XCzlha2RnTIppdNmwmcMIAKQ4F9IGFJUpNQRJNSLevblGC/BQAAGAYIEgBAMNYUyypP69LzzswtTigs2cUdrMFRrppJUEtzhjms7EpoX9sbstRjQAAAPqOIAUADGP3rGtVc7zzCnnQpPcuKFEowDCP0exNkwt04Nj0njT/3hzVmvp4jmoEAADQNwQpAGCYenlXu5btSh/mcfaMQk0tCeaoRsgXXn6KYo0JdwarnKTfVzWrOZbsfkMAAIAcI0gBAMNQc5ZhHtNLgjp9aiRHNUK+KQ0HdOmC4rSyunanO9e2yjnyUwAAgPxEkAIAhqH7N7SqMdb5QzNg0iXzixVkmAdSLKwIdwlcvbw7pud3xLrZAgAAILcIUgDAMLOyNqbnMn5knjktomkM80AWb51ZqBkZbeOe9S1qJD0FAADIQwQpAGAYaY073bW2Ja1sSnFAZ05nNg9kFwqY3rtfcdq0pG0J6YGaMMM+AABA3iFIAQDDyJKNrapr7/xhaZIumVfMbB7oUWVRUG+bmR7IWtcS0DM17TmqEQAAQHYEKQBgmHhsa5uerk7/UXna1IhmloW62QLodPKUiOaOSR/2cf/6Vu1qS+SoRgAAAF0RpACAYaApltRVT9allU0qCujsGQzzQN8EzPSe+cUqSPnPH01Kd6xpVZJhHwAAIE9w+Q0AhoFvvdCgjU2dV7xN0sXzilUQzJ9hHresas51FdCLCYVBnTerSHev75y+tqohrie3t+ukKUxfCwAAco+eFACQ556ujurXr6UHAE6aUqC5Y4gzo/9OmFyg/crT287fNraqNprMUY0AAAA6EaQAgDzWGnf61BN1Su2MPz4S0NtmFuWsThjeAma6ZH6xCqyzVUWT0p/XtjDbBwAAyDmCFACQx25Y1qA1DfG0sovmFymSR8M8MPyMjQR02oT0drWyLq4Xd8ZyVCMAAAAPQQoAyFMv7GjX/61oSis7obJA+5WHc1QjjCSHj0l2me3j3vWtaoox7AMAAOQOQQoAyEPRhNOVT9QqmdL7flqxl/QQGAhm0kXzihVK6ZTTHHe6f0Nr9xsBAAAMMoIUAJCH/velRr1Wl94d/8dvqlBhiGEeGDiVRUGdlTGN7fM7Ynp4S1uOagQAAEa7PgcpzGyxmZFKHgAG2cu72vWjlxvTyi6ZX6wzpxd2swWw906fGtHU4vTTgc88VcewDwAAkBP96UlxraRtZvYzMzt2sCoEAKNZLOl05RN1iqcM86gsCuj6Y8pzVymMaMGA6eJ5xUrto7OpKaHvLW/sdhsAAIDB0ucghXPuUElvltQq6R4zW2VmXzOz2YNVOQAYbX76SpNe3p0+w8IPjq/Q2Aij8zB4ZpaFdMqUSFrZjSuatGI3s30AAICh1a+zXufcS865z0uaIemTki6UtNbMHjezS82Ms2gA2Euv18X03eUNaWXvnFOkt5MsE0PgnJmFGlvQ2Z8i4aTPPV2npHM9bAUAADCw+h1UMLN5kq6W9AtJhf7930i6UtLdA1o7ABglEklvNo/2lDQA4yMBfe84hnlgaESCpnfOLU4rW1rTrt9XteSoRgAAYDTqT+LMT5rZM5KelVQp6X3OuYXOueucc7dLOkPSWwapngAwov1sRZOe35Hetf57x5VrQmEwRzXCaHTwuLAOGpueI/sbz9drZ1siRzUCAACjTX96Upwj6QeSpjrnPuGceyZ1oXOuRdI7B7JyADAarKqL6fpl6cM83jqzUO+cwzAPDL13zilWccpUt7VRp6ufa+hhCwAAgIHTnyDFo865PzvnoqmFZva5jvvOuX8OWM0AYBRIJJ0++UStoikXqisKTD86vkJm1v2GwCAZVxjQFw8rSyv745oWPbE92s0WAAAAA6c/QYqruyn/2kBUBABGoxuzDvOoUGUxwzyQO584sFQHVKQP+/ifp+sUS5JEEwAADK5QbyuY2ekd65rZaVLaVOpzJTGROgDshdV1MV2XZZjHhXMZ5oHcCgdMPzyhQuc8sHNP2et1cf36tWZ98sDSHNYMAACMdL0GKSTd5P+NSLo5pdxJ2i7pUwNdKQAY6bob5vFDhnkgTxxfGdGlC4r1h5TZPW5Y1qB3zSnSZHr6AACAQdLrcA/n3Bzn3BxJf+i479/mOudOcM4tGYJ6AsCI8vMVTXouyzAPfvwhn1xz5BiNKegMmjXGnL7xfH0OawQAAEa6PuekcM69fzArAgCjxeq6mL6dMczjnBkM80D+mVgU1FcPH5NWdufaVj1dTRJNAAAwOHoMUpjZayn3N5nZG9lug19NABgZEkmnK5+o6zqbxwkM80B+umL/Ei0amz469PPP1CtBEk0AADAIestJ8eGU++8dzIoAwGjw85VNenZHe1rZdxnmgTwWCpi+f1yF3vZgZxLNV3fHdPOqZn34AJJoAgCAgdVjkMI590TK/ccGvzoAMHJV1cd03Ytdh3m8m2EeyHNvmhzRhXOL9Od1rXvKvv1ig86fU6QJhQTYAADAwOlzTgoz+5yZHebfP84f6rHezI4ftNoBwAiRSDp98r91amOYB4apa48uV2mos63Wtztd+0JDD1sAAAD0X5+DFJI+K2m9f/87kn4o6duSfjzAdQKAEecXDPPAMDelOKgvHlaWVnb76ha9kNGuAQAA9kV/ghTlzrl6MyuTdKik/3PO3SRp4eBUDQBGhpW1MX0rY5jH2QzzwDD00UWl2q+8c6Sok/T5Z+qUdCTRBAAAA6M/QYpNZnaCpIslPe6cS5jZGEmJXrYDgFErmnD6yOO1abN5lDPMA8NUQdD03WPL08pe3BnT76taclQjAAAw0vQnSPF5SXdL+qqkb/llb5f07EBXCgBGiutfbNCru2NpZf97XIWmMMwDw9Rp0wp13qzCtLJrnm9QbTSZoxoBAICRpM9BCufcA865qc652c65F/ziP0s6b3CqBgDD2xPbo/rpq01pZe+aU6QL5xXnqEbAwLjumHIVBTt7Au2OJrvMXAMAALA3+tOTQmZWbmbHmNnpZna6pJP8GwAgRX17Uh97vFapI/WnFQf1g+MrclUlYMDMKA3p/x2ankTz5lXNemkXSTQBAMC+CfW+isfMLpd0o6QmSamDT52kuQNbLQAY3r7wTJ02N6en7Pn5SWNVEelXbBjIW1ceWKo/VDVrfaPXzpNO+sIz9frHWyeQbwUAAOy1/pwtXyfpAudcpXNuTsqNAAUApLh/favuXNuaVvbJA0t1ytRIjmoEDLzCkOmGYyvSypbWtHdp+wAAAP3RnyBFSNI/B6siADASbG1O6DNP1aaVLRob0tePGJOjGgGD56wZhTprRnoSzaufr1dDO0k0AQDA3ulPkOK7kr5mZvRVBoAsks7pk0/Uqq69MxNFQUD69cnjVBii+ztGphuOKVdByplBTWtS313emLsKAQCAYa0/AYfPSvqapEYzeyP1Nkh1A4Bh5Vcrm/WfrdG0sq8fMUYHjQvnqEbA4JszJqSrDk5PovmrlU16vS7WzRYAAADd63PiTEnvHbRaAMAw91ptTNe8UJ9WdtLkAn3yoNIc1QgYOp87pFR3rGnZkyw27qQvPlOv+88aTxJNAADQL30OUjjnHhvMigDAcNWecPrI47WKpkzmMabA9IuTxirADzSMAsWhgK47plyX/Wf3nrLHtkW1ZGObFs8uymHNAADAcNPn4R5mFjGz68xsnZnV+2VvMbMr+7j92Wa2yszWmNmXutn/nf7ypWY22y8fb2b/MbMmM/tZxjaP+vtc7t8m9fX1AMBAuX5Zg17Znd61/QfHVWh6aX86qwHD23mzCnVqxgw2X322Xs0xkmgCAIC+609Oih9JOkjSpZI6ssKtkPTx3jY0s6CkGyWdI2mRpEvMbFHGaldIqnXOzfef67t+eZukr0v6n252f6lz7jD/VtOP1wMA++w/W9r0k1ea0sreNadIF84rzlGNgNwwM3332HKl5ojd3JzQj15u6n4jAACADP0JUpwv6T3OuaclJSXJObdF0rQ+bHuMpDXOuXXOuXZJd0hanLHOYkm3+vfvlnSGmZlzrtk594S8YAUA5I3tLQl95PFauZSyacVB/eD4ilxVCciphRVhffzA9DwsP321Uesa4jmqEQAAGG76E6RoV0YOCzObKGlXH7adJmlTyuPN6hrc2LOOcy4uqV7S+D7s+3f+UI+vG9m5AAyRRNLLQ7GjrbMre8CkX5w8VhURZmrG6PX5Q8tUWdT5HWhPSl9eWpe7CgEAgGGlPwOm/yzpVjP7rCSZ2RRJP5bXKyJXLnXObTGzMkn3SHqfpNuyrVhVVTWkFcsno/m1oxPtYGD95o2QHt9WkFb2oRntmtL0hgbzra6uCQ7APqoHoCYYCbprC1WBRNbyvvrEjKC+sbozP8VDm6O6eelanTSO/BT5iP8P6EBbgEQ7QKfBagsLFizocXl/ghRfkXSDpFckFUuqkvRbSd/sw7ZbJM1IeTzdL8u2zmYzC0kqVy+9NPzhJnLONZrZH+UNK8kapOjtjRipqqqqRu1rRyfawcD677aofrtpZ1rZSZML9J3TpioYGNwOXZXJ5n3avrqmWpWTKgeoNhjOemoLCxaU7NO+r5rv9I/6nXq6un1P2f9tKtF7jqxUYYhOj/mE/w/oQFuARDtAp1y2hf70SZ4vaZWk6yV9Q9LxzrnP+DkmevOcpAVmNsfMCiRdLGlJxjpLJF3m379A0iPOOadumFnIzCb498OS3i7p1X68HgDotx2tCX34sd1KphydJhYG9JtTxg16gAIYLjqSaKZ+JdY3JvSzFSTRBAAAPes1SGGem+X1oPiKpHMlfVjSMjP7XV/yQPg5Jq6U9JCk1yTd5ZxbYWbXmtl5/mo3SRpvZmskfU7SnmlKzWyDpB9KutzMNvszg0QkPWRmL0taLq8nxm/69rIBoP+Szulj/63V9tbOLusm6dcnj9Xk4n0fhgGMJIeML9AVC9N7ZPzgpUZtaiKJJgAA6F5fhnt8RNKpko5zzj3XUWhmR0v6k6SPSvplbztxzj0g6YGMsqtT7rdJurCbbWd3s9sje3teABgoP3mlSQ9viaaVfe6QUp02rTBHNQLy21eOGKN717dqV9QL7LUmnL72XL1uPa0vebEBAMBo1JcgxfskXZUaoJAk59xzZvYZSV9WH4IUAJDpllX7ll9hMF2ecQX4meqovv1iQ1rZ8ZUF+vLhY4ayWsCwMjYS0DeOGqOrnqzbU/aXDW16ZEubTie4BwAAsuhLTopFkh7rZtlj/nIAGLF2tyV0xaO1SqTkoRgXCei3p4xTiDwUQI/eu6BYR0wIp5X9z9N1aot3m3YKAACMYn0JUgSdc43ZFvjl/Um+CQDDinNOH3+iTlta0qdk/MVJYzWthDwUQG8CZvrf4yqUGs5b15jQT17NemoBAABGub4M9wib2WmSurtc2J9pTAFgWLlxRZMe2tSWVvapg0p11gy6qgN9dcTEAn1w/xLd9HrnEK8fvtyoC+cWa+4YTiMAAECnvpwZ1Ei6uZflADDivLCjXdc8n56H4uiJYV19JHkogP76+hFjtGRDq3a0eUk0ownp88/U6e4zx6sPE4UBAIBRotehGs652c65OT3dhqKiADCU6qJJfeDR3UodNl9eYPrtKeMUJg8F0G8VkYC+dXR5WtnDW6JasrGtmy0AAMBoRD4JAMjgnNOnnqzVG03peShuPHGsZpXRNR3YWxfNK9KJkwvSyr68tE6NsWSOagQAAPINQQoAyPDE9nb9NePq7kcPKNHbZxXlqEbAyGBm+sHxFQqldEba2pLU9RnT+wIAgNGLIAUApNjUFNf9G1rTyg4bH9a1Gd3UAeydhRVhfeqg0rSyX73WrGU723NUIwAAkE8IUgCAry3udOvqFiVS8lCMCZt+d+o4RYLkoQAGyucPK9PM0s4pfJNOuurJOsWTroetAADAaECQAgDk5aG4c22Ldralj43/yZsqNIcpEoEBVRwK6AfHV6SVvbI7pp+vaMpNhQAAQN4gSAEAkp6ubteyXbG0sg8uLNH5c4pzVCNgZDtzeqEumJue5+U7yxq1oTGeoxoBAIB8QJACwKi3tTmh+zLyUBw4NqTrjyEPBTCYrj+mXBUFnUOpWhNOn3uqTs4x7AMAgNGKPswARrVowumW1c1KnQGxICDdcto4FYbIQwEMpklFQX37mHJd+UTdnrJHtkZ117pWXTSvay+mW1Y1D2Ht+ufyhSW5rgIAACMCPSkAjGp3r2tRTWt6Hop3zyvWgvJwjmoEjC6Xzi/WiZML0sq+srReu9oSOaoRAADIJYIUAEatpTVRPbcjPQ/FsZMKdNTEgm62ADDQzEw/PqFCkc7JPrQrmtQXl9bnrlIAACBnCFIAGJW2tyR0z7r0PBSTiwJ615yibrYAMFjml4f1+UPHpJXdva5Vf9vY2s0WAABgpCJIAWDUaU843bKqWe0pozzCAemyhSUqCJKHAsiFTx9cqoPHpQ+z+tzTdaqNJrvZAgAAjEQEKQCMOveub9X2jDwUF8wp0pTiYDdbABhs4YDpxhMrlJqvtqY1qS8trctZnQAAwNAjSAFgVHlhR7ueqWlPKztqYljHTCIPBZBrh4wv0GcPKUsru3Ntqx7a1JajGgEAgKFGkALAqFHTmtBda1vSyiYWBnTh3GKZMcwDyAefP7RMi8amz5D+madqVcewDwAARgWCFABGhVjSy0OR+jsnZNLlC0sUIQ8FkDcKgqafnzhWqV/LbS1JffU5ZvsAAGA0IEgBYFT4y4ZWbW1JvxJ7/pwiTSshDwWQbw6bUKBPH1yaVvaHqha9sjvWzRYAAGCkIEgBYMR7ZXdMT2xPz0Nx2PiwTqgkDwWQr7542BjtX5E+7OPONS1qbGfYBwAAIxlBCgAjWn17UnesSc9DMT4S0EXzyEMB5LNI0PTLk8amzfbRFHe6c22LnHO5qxgAABhUBCkAjFhJ5/SHqhY1xzt/0ARMumy/YhWFCFAA+e6wCQX64mHps328WhvX0owZegAAwMhBkALAiPXo1qhW18fTyt46o1Azy0LdbAEg33z2kDIdPTGcVnbf+lbtbEvkqEYAAGAwEaQAMCJtaorr72+0pZUtGBPS6dMiOaoRgL0RCph+dfI4Faf0foompT9WtSjJsA8AAEYcghQARpxowum21S1KpPx+KQ6ZLl1QrAB5KIBhZ+6YkK47ujytbF1jQv/eEs1RjQAAwGAhSAFgxLlvfat2tKXPAHDRvCJVRDjkAcPV5QuLtShjto9/vNGm9Q3xbrYAAADDEWfsAEaU5Tvb9UxGUr3jKwt06HimGwWGMzPTxfOLVZIy7CMp6baqZrXEmZYUAICRgiAFgBGjNprUnWtb08omFQX0jtlFOaoRgIE0piCgSxcUp5XVRp3uWtvKtKQAAIwQBCkAjAhJ5/T7qma1piSiCJr0/gXFigTJQwGMFIvGhnXKlPQEuMt3xbr0oAIAAMMTQQoAI8LDW6Ja25A+JeHbZxVqeinTjQIjzbmzCjW9JJhWdu/6Vm1vYVpSAACGO4IUAIa9DY1xPZgx3ejCilCXq60ARoZQwPT+/YpVkHIWE0tKt65uVnuCYR8AAAxnBCkADGvRhNPvq1qUmjavJGR6z3ymGwVGsklFQV0wNz0/xbaWpO5e39rNFgAAYDggSAFgWFuyoVU7M6Ybfc/8YpUXcHgDRrqjJ4Z15IRwWtmzNe16pjqaoxoBAIB9xVk8gGFrVV1MT1anJ8s7cXKBDhwX7mYLACOJmenCecWaVJR+OnPP+lZtbo7nqFYAAGBfEKQAMCy1xp3+tKYlrWxCYUDnzmK6UWA0KQyaPrCwpEt+iltWtag1Tn4KAACGG4IUAIal+ze0qq698weIyRvmwXSjwOgzpTiod89Lz0+xsy2pP61pkXMEKgAAGE4IUgAYdlbsjmlpTfowj1OnRjR3DNONAqPVURMLdEJlQVrZy7tj+s9W8lMAADCcEKQAMKw0x5K6c236MI/KooDeOrMwRzUCkC/On1Ok6SXBtLK/bmzTqrpYjmoEAAD6iyAFgGHl3vWtaoh1dt8OSLp0frHCAYZ5AKNdOGD6wMJiFaUM+3KSbl3dol1tidxVDAAA9BlBCgDDxku72vXCzvQromdMj2hmGcM8AHjGFwb1/v2KlRq2bIk73fR6s9oT5KcAACDfEaQAMCw0xZL689rWtLKpxQGdNZ1hHgDSHTA23GUI2NaWpP60lkSaAADkO4IUAPKec05/XtuqppTpBAMmvWdBsUIM8wCQxZunRXTo+HBa2bKdJNIEACDfEaQAkPde3BnTS7vTh3mcPb1Q00sY5gEgOzPTe+YXa3JR+qnOXze2aWUtiTQBAMhXBCkA5LX69qTuWZ8+zGNGSVBnTI/kqEYAhotI0HTF/iVdEmnetrpZ21tIpAkAQD4iSAEgbznndNfaFrWkDPMImXTpgmIFjWEeAHo3sahrIs22hPSb15rVHEvmrF4AACA7ghQA8tYLO2NaURtPK3vrzEJNLg7mqEYAhqMDxoa1eHZ6Is1d0aRuXtWseJJEmgAA5JMhC1KY2dlmtsrM1pjZl7Isj5jZnf7ypWY22y8fb2b/MbMmM/tZxjZHmtkr/jY/NePSKjBSNMWSui9jmMecsqBOncowDwD9d8qUiI6bVJBWtrYhoXvWtzLjBwAAeWRIghRmFpR0o6RzJC2SdImZLcpY7QpJtc65+ZJ+JOm7fnmbpK9L+p8su/6FpA9LWuDfzh742gPIhfs3tKo5Y5jHxfOLFSAWCWAvmJkumFukeWPSe2I9Xd2ux7Yx4wcAAPliqHpSHCNpjXNunXOuXdIdkhZnrLNY0q3+/bslnWFm5pxrds49IS9YsYeZTZE0xjn3jPMugdwm6R2D+SIADI3XamN6fkd69v2zZhSqsohhHgD2Xihg+sDCEo2PpJ/+/GVDm17a1Z6jWgEAgFRDFaSYJmlTyuPNflnWdZxzcUn1ksb3ss/NvewTwDATTXjJMlNNLQ7odIZ5ABgApeGAPnRAiSIpMU8n6fdVLVrfEO92OwAAMDRCua7AUKmqqsp1FXJmNL92dMrHdlBd07VnxL92BFXb3nloMjmdOa5NO3e2dll3MFUF8nN6wmzvWf/3UT0ANcFI0F1bGMntX/Ku0LxjkumubWE5f96PWFL69cpGvX96TOMK+p+jIl/fs77Ix/8PyA3aAiTaAToNVltYsGBBj8uHKkixRdKMlMfT/bJs62w2s5Ckckm7etnn9F72uUdvb8RIVVVVNWpfOzrlazuoTDanPd7QGNcL9U1pZadMKdThM8cOZbUkSQsWlAz5c/ZF5nvWX9U11aqcVDlAtcFw1lNbGKntP21fkqw4qjvWdgZAW5Ome2oK9emDSlVW0L/Opvn6nvUmX/8/YOjRFiDRDtApl21hqIZ7PCdpgZnNMbMCSRdLWpKxzhJJl/n3L5D0iOsh3bZzbpukBjM7zp/V4/2S/jLwVQcwFOJJpzvXtij1Sz8uEtA5Mwu73QYA9sVxlRGdNT19KNnOtqR++3qz2hPM+AEAQC4MSZDCzzFxpaSHJL0m6S7n3Aozu9bMzvNXu0nSeDNbI+lzkvZMU2pmGyT9UNLlZrY5ZWaQT0j6raQ1ktZKenAoXg+AgffIlqi2tSTTyt49r0iRILN5ABg8Z88o1NETw2llG5sSur2qRUmmJgUAYMgNWU4K59wDkh7IKLs65X6bpAu72XZ2N+XPSzpo4GoJIBeqWxJ6aHPaBD46emJY+1eEu9kCAAaGmemiecWqb2/W6vrOxJmv7I7pvvWteuecIhlTHwMAMGSGargHAGSVdN4wj9Se1aUh0ztmF+WuUgBGlY6pSacUp58W/Xd7ux7dFs1RrQAAGJ0IUgDIqaer27WuMT0r/vlzilQS5vAEYOgUhUwfPaBU5QXpvSb+sqFNy3e256hWAACMPvwKAJAzddGklmxMn1p0UUVIR0xgmAeAoVcRCeijB5QqkjHT6e+rWrSuIZ59IwAAMKAIUgDICeec7l7XomhKJ4pIQLpwXjHjvwHkzNSSoD64sESBlMNQ3Em/ea1ZW5sT3W8IAAAGBEEKADmxZGObXq1NvzL59llFGhvhsAQgtxZWhHXRvPS8OK0Jp1+ubNLONgIVAAAMJn4NABhyddGkPv9MXVrZ7LKg3jS5IDcVAoAMx06K6OwZhWllDTGnX6xoVn17sputAADAviJIAWDIff25etW0dp7kB026aF6xAgzzAJBHzpoe0UkZwdNd0aR+saJJzTECFQAADAaCFACG1GNbo7q9qiWt7M3TIppSHOxmCwDIDTPT+XOKdNTE9GS+21uT+vVrzYqmzp0MAAAGBEEKAEOmNe70madq08oqiwI6c3phN1sAQG4FzHTJvGIdODaUVr6xKaGbX29WPEmgAgCAgUSQAsCQuWFZg9Y3diadM0kXzytWKMAwDwD5KxgwXbZfieaNSe/xtao+rttXtyjpCFQAADBQCFIAGBLLd7brZyua0sreNLlAc8aEutkCAPJHQdD04f1LNb0kPVDx0u6Y7lrbKkegAgCAAUGQAsCgiyedrnqyTqnDt6cVB/X2mUXdbwQAeaYwZPrYohJNKko/fXqmpl1XP99AoAIAgAFAkALAoPv5iia9vDuWVvaDE8pVGGKYB4DhpTQc0McXlaqiIP349X+vNulHrzR1sxUAAOgrghQABtW6hriuX9aQVvauOUU6ewa9KAAMT2MjAX38wFKVZgRar32hQTeuIFABAMC+IEgBYNA45/SZp+rU1pkrU2MjphuOLc9dpQBgAFQWBfXRRSWKZMye/NVn6/XLlQQqAADYWwQpAAyaP6xp0ePbomll1x1drolFwW62AIDhY0ZpSB/Zv1ThjLOpLy2t129eI1ABAMDeIEgBYFBUtyT0tWfr08pOnRrRJfOLc1QjABh488pD+vABJSrMiL1+/pl6/e715txUCgCAYYwgBYBB8aWl9apr78x0XxQ0/fiECpmRLBPAyLJfeVh/OmN8l6Efn326TretJlABAEB/EKQAMOAeeKNV921oTSv7yhFlml0WylGNAGBwnTatUH84fbwKMs6sPv1knX5fRaACAIC+IkgBYEDVRZP63FN1aWWHjQ/r44tKc1MhABgib55eqNtPH5+Wo8JJ+tQTdbpjTUvO6gUAwHDCZU0AA+rrz9Vre2tyz+OgST99U4VCgeE1zOOWVVz5BNB/Z80o1G2njdP7/7NbMf9Q6CR94olaBU26cB55eQAA6Ak9KQAMmP9sadPtVelXCz97cJkOGV+QoxoBwNA7Z2aRbj51nEIpsdmkkz7631rdu44eFQAA9IQgBYAB0RRL6qqMYR4Ly0P6/GFluakQAOTQubOKdNOp4xTMCFR8+PFa3bWWQAUAAN0hSAFgQHzzhQZtakrseWySfnbiWEWCw2uYBwAMlMWzi/Sbk8cqdbRbwkkffbyWWT8AAOgGQQoA++yp7VH95rX0E+6PH1iioycxzAPA6PbOucX61UnpgQon6aon6/TrlU05qxcAAPmKIAWAfdIad/rUk7VpZXPKgvraEWNyVCMAyC8XzivWTaeMTctRIUlfWFqvn77SmJtKAQCQpwhSANgn31nWoLUNibSyn75prIpDHF4AoMP5c4p12+njVJBxaLz6+QZdv6xBzrncVAwAgDzDrwgAe+3FHe362Yr07sofXFiik6ZEclQjAMhfb51ZpDvePF5FGbl6vre8UV9YWq8kgQoAAAhSANg70YTTJ5+oVTLlnHp6SVDXHMUwDwDozunTCvXnt4xXScbYj9+81qyPPF6r9gSBCgDA6EaQAsBe+cHLjXqtLp5W9uMTKjQmsy8zACDNiZMjuv+sCaooSA9U3L2uVZc+vEst8WSOagYAQO7xawJAv726O6YfvpSe7O2S+cV68/TCHNUIAIaXoycV6IG3TtTkovRTsX9tier8h3apNkqgAgAwOhGkANAv8aQ3zCOe0iN5UlFA1x9TnrtKAcAwtGhsWP9420TNLQumlS+taddZf9+hjY3xbrYEAGDkIkgBoF9++mqTXtoVSyv7wfEVGhvhcAIA/TW7LKR/vG2iDhoXTitfXR/XW/6+Q8t3tueoZgAA5EYo1xUAMHy8ujum7yxrSCs7f3aRzp1VlKMaARgMt6xqznUVRpVJRUH97ewJes/Du/RUdWdQoro1qbc9uFO3njZur4fT9fZZVtcEVZnMzed9+cKSnDwvACC/cekTQJ9EE04ffXy3YinDpMdFAvrecQzzAIB9VREJ6L6zJuidc9KDvs1xp4v+vUu3rSZwBAAYHQhSAOiTG5Y1aEVt+vjoH51QoYlFwW62AAD0RyRo+u0pY/Wpg0rTyhNOuurJOn39uXolkkxRCgAY2QhSAOjVM9VR/eTVprSyd88t0uLZDPMAgIEUMNO3ji7XDceWyzKW/d+rTbr0kd1qijHzBwBg5CJIAaBHTbGkPv7fWqVevJtaHND3jqvIWZ0AYKT72KJS3XraOBUF00MV/9jUprP+vkObmpj5AwAwMhGkANCjq59r0PrGRFrZjSeOVQWzeQDAoDpvdpEeeOsETS5KP96uqI3rjL/t0DPV0RzVDACAwcOvDADdemhTm27OyAz/4f1LdNq0vcsyDwDon8MnFOjhcyfpkIwpSmtakzr3Hzv1u9eb5Rx5KgAAIwdTkAKjwL3b+z/FXH17Ut9b3phWNrEwoPnlIaYnBIAhNK0kqAffOkEffbxWf3ujbU95LCl99uk6LdvVru8fV6FIMDOLBQAAww89KQB0kXROf1zTouZ459W5gKRLFxRzEgwAOVASDui208fpfw4p67LsttUtetuDO7S1OZFlSwAAhheCFAC6eGxbVKvq0pOynT2jULPL6HwFALkSMNPXjhyjW08bp5JQesD4+R0xnbKkRo9tJU8FAGB4I0gBIM3mprj+trEtrWzumKDePD2SoxoBAFItnl2kf799ouaWBdPKd7Qldf4/d+p7yxuUJE8FAGCYIkgBYI9owum2qhYlUs5ti4Km9y0oUcAY5gEA+eKAsWE9cu4knTktPYCcdNL1yxp14b92aWcbwz8AAMMPQQoAe9y3vlU1rcm0sovmFWks040CQN6piAR0x5vH64uHlSkzjPzwlqhO/kuN1jbEs24LAEC+4pcHAEnSczXteqamPa3suEkFOmxCQY5qBADoTTBg+vLhY3TPW8ZrfEZAeWtLUj97tUkPvtGqBMM/AADDBEEKANrWktCf17WklU0sDOj8OUU5qhEAoD9On1ao/y6epOMmpQeWnaSHNkf1s1ebtLstmX1jAADyCEEKYJSLJpxuWdWs9pRz13BAunxhCdONAsAwMrUkqL+eM0FXHVTaZdn6xoS+91KDlu9sz7IlAAD5gyAFMIo553TX2hZVZ+SheNecIk0rCXazFQAgX4UDpmuPLtc9bxmvSUXpp3ltCemW1S36fVWzWuL0qgAA5KchC1KY2dlmtsrM1pjZl7Isj5jZnf7ypWY2O2XZl/3yVWZ2Vkr5BjN7xcyWm9nzQ/RSgBHj6ep2vbAzllZ29MSwjp1EHgoAGM7OmFaoJxdP0gEVoS7Lnt8R0/eWN2p1XSzLlgAA5NaQBCnMLCjpRknnSFok6RIzW5Sx2hWSap1z8yX9SNJ3/W0XSbpY0oGSzpb0c39/HU5zzh3mnDtqkF8GMKJsaorr3vWtaWWTiwK6YG6xjOlGAWDYm1gU1IcPKNE7Zhcqc/ReXbvTz1c26187gmpPkFQTAJA/hqonxTGS1jjn1jnn2iXdIWlxxjqLJd3q379b0hnm/VJaLOkO51zUObde0hp/fwD2UmN7Uje93qx4ynlpQUD6AHkoAGBECZjp1KmF+n+HlGlKcdfTvufrQ/reS42qqqdXBQAgPwxVkGKapE0pjzf7ZVnXcc7FJdVLGt/Ltk7SP83sBTP7yCDUGxhx4kmn361uVl17+pWzi+YVq7KYPBQAMBJNLQnq/x1SpjOmRZQZit7ZltSNK5p159oWclUAAHKu60DF4eVE59wWM5sk6V9m9rpz7vFsK1ZVVQ1x1fLHaH7t6BBUdU21JOkfNSGta0gPRhxVHtd0V6vqmlzUDUOtoy0AtIWBUxVI5LoKWVXXpB/vjymSpkwz/a06rLp4erji6ep2vbIzqrMmxrVf6eAHK/L1PRvNOGeERDtAp8FqCwsWLOhx+VAFKbZImpHyeLpflm2dzWYWklQuaVdP2zrnOv7WmNl98oaBZA1S9PZGjFRVVVWj9rUjxfZ1qpxUqaero1rWkJ6HYkF5SJcsKleQPBSjQnVNtSonVea6GsgDtIWBtWBBSa6rkFVlsrlrmaSDpjv9bWOrntiePiVpU8J0z/awDh0f1rvmFGlMweB1us3X92y04pwREu0AnXLZFoZquMdzkhaY2RwzK5CXCHNJxjpLJF3m379A0iPOOeeXX+zP/jFH0gJJz5pZiZmVSZKZlUh6i6RXh+C1AMPSuoa47l6XHqAYFwnosv2KCVAAwChTGDRdMLdY75vW3mWqUkl6aVdMNyxv1NKaqLzTMQAAhsaQ9KRwzsXN7EpJD0kKSrrZObfCzK6V9LxzbomkmyTdbmZrJO2WF8iQv95dklZKikv6pHMuYWaVku7zZyEISfqjc+4fQ/F6gOGmLibdvrFZiYxEmR/av0Sl4SGbiRgAkGemFzl9/tAy/XNzmx7eElUy5f9ES9zpT2ta9eKOmC6cV6QJheQtAgAMviHLSeGce0DSAxllV6fcb5N0YTfbXifpuoyydZIOHfiaAiNLXTSpu7aG1RRLvxL2nvnFmlrCCScAjHbhgOltM4t0+PgC/WlNizY1p+eKWFUf1w3LGnX6tIjePK1QBcwCBQAYRFxCBUaw9oTTex/ZpV2x9K/6mdMiOmxCQY5qBQDIR1NLgvrMIaVaPKtQmZ3s4k765+aorl/WoOU72xkCAgAYNAQpgBHKOadPPVnbJSnaYePDOmdmYY5qBQDIZ0EznTatUF88rEwLyrt2uK1rd7pldYt+vrJZ21qYnQMAMPAIUgAj1A3LG3Xn2vREmXPKgrp0QbECJMoEAPRgQmFQn1hUokvnF2tMuOv/jKr6uL6/vFH3rW9Va5xeFQCAgTNkOSkADJ3bVjfru8sb08omFAZ0xf4lCgcIUAAAemdmOnpSgQ4eF9ZDm9v02Lb0xJpJSY9ti+qFne06d2ahjp5UQBAcALDP6EkBjDB/2dCqzzxVl1ZWFHD66AHM5AEA6L/CkGnx7CJ94dAyLcwyBKQp5vSnta360ctNWlMfz0ENAQAjCb9YgBHkkS1t+tBju9OudEWC0gVTYppYxEweAIC9N7k4qI8tKtEHFxZrbKRrj4lNzQn9bEWTfvNak7aTrwIAsJcY7gGMEEuro3rvI7sVS3aWBU266ZRxWvHGttxVDAAwYpiZDhlfoP0rwnp4S5se2RpN+78jSStq41pZ26jjKgt01vRCVUS4JgYA6Dv+awAjwKu7Y3r3v3epJSN52c9OHKu3zyrKUa0AACNVQdB0zswifemwMh06LtxluZP0dHW7rlvWoPvXt6qxPdl1JwAAZEFPCmCYe602pvMf2qn69vQAxQ3HluuS+cU5qhUAYDQYXxjUB/Yv0fqGuJZsbNX6xvRhHrGk9Oi2qJ6qjuqUKRGdNi2i4hDXyAAA3SNIAQxjK3bHtPihndrZln6F6suHl+lji0pzVCsAwGgzZ0xIVx1Uqpd3x/S3jW3akfF/qT0p/WtLVP/dHtVJkyM6ZWokRzUFAOQ7ghTAMPXK7pje8Y+d2hVNPxH8+KISfeHQshzVCgAwWpmZDh1foIPGhrW0pl0PbW7r0suvLeEFKx7bFtW2lqQ+dVCpJheT2BkA0In+dsAw9PKudp33jx1dAhQf3r9E1x9TLmOeegBAjgQDphMmR/S1I8boHbMLVRrq+j+pPSnduKJJh969XVc9WatVdbEc1BQAkI8IUgDDzLKd7TrvHztVG02/OvXRA0r0veMIUAAA8kM4YDp1aqG+fuQYvX1moUqyBCuiCem21S069r4aXfjPnXpsa5ucc1n2BgAYLRjuAQwjj25t03sf3q2mjFk8PnFgia47mgAFACD/RIKmN08v1ElTInq6OqpHtkTVEOsaiPjXlqj+tSWqRWNDumL/Er17XrHKwlxPA4DRhiM/MEzct75FF/5rV5cAxacOKiVAAQDIe5FgZ8+KC+YWaWZp9lwUK2vj+n9P1+uAO7brc0/V6dXdDAUBgNGEIAUwDPx6ZZM++GitYhnTzH/24FJde9QYAhQAgGEjHDCdODmiF99VqVtOHaejJoazrtcUd7p5VbNO/EuNTvtrjX69skm72hJZ1wUAjBwM9wDymHNO1y1r1P++1Nhl2bePHqMrD2IWDwDA8BQKmN4xp0jvmFOkpdVR/WxFk/7+RpuSWVJSLNsZ07Kd9frqc/V6y/RCXTSvWGdOL1RRljwXAIDhjSAFkKda405XPlGre9a3ppWHTLrxpLG6aF5xjmoGAMDAOrYyomMrI9rcFNdtVS26bVWztrcmu6wXS0p/f6NNf3+jTSUh01kzCrV4dpHePC2iEvJXAMCIQJACyEPbWxJ6z8O79OLO9HG4xSHTraeN05nTC3NUMwAABs/00pC+cvgYff7QMj3wRpt+t6pZj22NKtt8H81xp3vXt+re9a0qCppOnRrRWTMK9eZpEU0v5RQXAIYrjuBAnnlpV7su+fcubW1Jv4I0NmK6680TdPSkghzVDACAoREOmBbPLtLi2UXa3BTXXeta9ac1Laqqj2ddvzXh9OCmNj24qU2StGhsSGdOK9TJUyM6blIBvSwAYBghSAHkkfvWt+iTT9SpJWMGj4XlId3x5vGaM4avLABgZLhlVXOf1x0XCegTi0r0RlNCz+9o18u7Y6pvz9a/wrOyNq6VtU36yatNCpg0qzSo+eUhzS0LaVZZUMWh7oMWly8s6dfrGEr9ec/6q7omqMrk3u0/n98zAMMPv3iAPNCecPrac/X69WtdTw7OnBbRb08dp/ICrgIBAEYvM9OsspBmlYV0/hynjY0JLd8V00u72lXXQ8Ai6aT1jQmtb0xIikqSKosCml0W0qzSoKaVBDW5OKhIkCScAJAPCFIAOfZGU1wf+M9uvbCz6zzwnziwRN86qlzBACdOAAB0CJhpzpiQ5owJ6R2zC7W1JamVtTGtrI1pQ2Miaw6LVNWtSVW3tmtpjffYJE0oDGhqcVDVrQkdNDasA8eFNbM0qADTfAPAkCJIAeTQvza36SOP71ZtNP10qiAgff+4Cl1G90kAAHpkZppW4vWIOHN6oZpjSa2qj6uqPq419XHtaOs6S0gmJ2lHW1I72pJ6aXfnRYOysOmAirDmlYc0b0xI88YENacspHnlIZWR5wIABgVBCiAHWuNO33yhXr9c2XV4x8zSoG49bZwOn0CCTAAA+qskHNAREwp0hP9/tC6a1JqGuNY2xLWhMa7tLclee1p0aIw5PbujXc/uaO+ybFJRQHPLQpo7xrvNKQtqdllIs8uCGhcJyOiBAQB7hSAFMMSW72zXRx+v1aosGcrPmlGoX500VhURrs4AADAQKiIBHTWxQEdN9IIWbXGnN5ri2tCY0JbmhLa2JLSzre+Biw41rUnVtLbrmZquAYyysJc/Y3ZpZ+Ci4++M0hD5LwCgBwQpgCGSSDr95NUmXf9igzIm71DQpK8fMUZXHVzK2FcAAAZRYci0X0VY+1WE95RFE07bWhLa1pLQmIKAVuyOaUVtzzOI9KQx5vTq7phe3d0135RJmlYS1KyOwMWeQIYXxJhQSC8MAKMbQQpgCKzYHdOnn6rV8zu6nqzMLA3qVyeP1fGVkRzUDAAARIK2J1DQMZ2mc06bmxNaXR/XOn+4SMffjY2JLhcc+spJ2tyc0ObmhJ7c3rUXRknINKs06PXE8AMZCytC2r8iLOccAQwAIx5BCmAQtcad/velBv3klaasJzPvXVCs648p1ximFwUAIK+YmWaUhjSjNKQzpqUviyedNjUl0gMXTQltbPSGkbQm9jKCIak57rSyLq6VdV2HhRaHTJVFAU0uDmpyUVCTiwOqLAqqvMAIXgAYMQhSAIPk8W1RfebJWq1rTHRZNj4S0I/fVKFzZxXloGYAAGBfhAKdU6Bmcs6ppjWpDY1xbUgJXGxo9HpgbGnpel7QVy1xp/WNCa3POLcoDHpDSGaUhDSjNKjppUFNLAwwhBTAsESQAhhgm5ri+sbzDbp3fWvW5W+bWagfHl+hyuLgENcMAAAMNjNTZXFQlcVBHVvZdXlb3GlTc2fgovOvF8Ro2otxJG0JaW1DQmsbOoMXkaA0ncAFgGGIIAUwQJpjSf3k1Sb99JVGtWW5SDKlOKDvHUfvCQAARrPCkGlBeVgLysNdljnntCua1IbGzh4YVfUxraqPa3VdXM39CGBEswQuikOm2WXBPVOnzigNKhwgaAEgvxCkAPZRIun053Wt+tYLDVm7cJqkK/Yv0dePHKNyck8AAIBumJkmFAY1oTC4Z8rUDknn9OOXm7S9NaHtLQltb0lqe2tC1S0JRZN9239L3GllbVwra718F0HzEnjPKQtpnAuoNJZUSZhzFQC5RZAC2EvOOf3tjTZd/2KDXsuS3EqSDh0f1veOLdexzNwBAAD2QcBM4woDGlcY0KKxnb0wnHPaHU1qU1NCm5oT2tTkzRzS0odeFwmnlBwXYd29rUGTiwLaryKk/crDmjcmpKIQPS0ADC2CFEA/Oef06NaovvVig17c2XVKUUmaWBjQ1UeO0XvmFytIN0oAGPFuWdWc6ypglDIzjS8ManxhUIdN8MoyAxebmxJ6o6lvs45sb01qe2u7Ht/WroCkGaVBP2jhTdHK8BAAg40gBdBHSef04Btt+tErjXp+R/bgRDggfXxRqf7n0DKmFQUAADmRLXCRdE7VrUmta4hrfWNc6xoS2t3LOJGk5E2t2pTQvzZHFQ5Ic8q8gMV+5SFNLw2SiBPAgCNIAfQinnS6Z32rfvxyY7fDOkzSu+cV6cuHj9HsMr5WAAAgvwTMNKU4qCnFQb1psjcMtS6a1LrGuNY3xLW6tk010YB66msRS0qr6+NaXe+dDxUFTQvKQ4olnU6ZEtGC8pCMoAWAfcSvKaAbu9oSum11i256vVmbm7uf0/zcWYX6yuFjdMDYrlm6AQAA8lVFJKAjIgU6YkKBqmsaVTZuotY2JLS6Lqaq+ri2t/bc06I14fTy7pg+/0y9JG8ms5OmRHSyf5tZyk8NAP3HkQPI8NKudv36tWbds64l61SiHc6aHtEXDxujIzKybwMAAAxHxaGADh4X0MHjvAsv9e1JVfnTn66uj6muveecFttakrprbavuWtsqSZpTFtwTsDh5SkQTi4KD/hoADH8EKQB53R3vWd+i31e1aFk3yTAlKWDSO+cU6TMHl+mgcfScAAAAI1d5QUBHTSzQURML5JzTzrbknuEeVfXxXmcQ8WYOadGtq1skSYsqQjppSkSnTI3ohMqIKiLk7wLQFUEKjFrxpNN/t0X1xzUt+uvG1h57TRQFTRfPL9JVB5VpzpjsXxsyuwMAMPzx/zw7M9PEoqAmFnk5LZLOaWtzQqv9YMVT1e29Bi1W1sW1si6uX73WrIBJh40P67jKAh0zMaKjJxVoWgk9LQAQpMAok3ROT1e36771rfrLhlbtaOt5rOXM0qA+tH+J3rdficYS7QcAAJDkJeKcXhrS9NKQLl9YovaE0ws72/X4tqge2xrVczvaFevhNCvppBd3xvTizph+Li8wNL0kqKMnFuiYSd7t4HFhFQRJxAmMNgQpMOJFE05Pbo/qwTfa9Pc3WrW1pefAhEk6dWpEH9q/RGfPKFSQ+cABAAB6VBA0HV8Z0fGVEX3xMKklntQz1X7QYltUL+2KKdlzRwttbk5oc3Or7tvg5bQoDEqHjS/QoePDOnBcWAeODWv/ipBKwlw4AkYyghQYkba1JPTo1qge2tSmh7e0qTHWy39Feb0mLl1QrEvmF5ONGgAAYB8UhwI6fVqhTp9WKMnL//Xkdi9g8d9t0W6ndU/VlpCeqWnXMzXte8pM0twxQR04tjNwceDYsGaWBrmwBIwQ/BLDiNAY86L1j2xp06Nb+/aPT5LGhE1vn1Wki+YV6aQpEQWY2xsAAGDAVUQCetusIr1tVpEkqboloWdq2vVcTbuerWnX8l3tau+5s6skyUla25DQ2oaElmxs21MeDkgzSoKaVRbSrNKgZpeFNKssqFmlIc0uC2psJCDjPA8YFghSYFja3pLQ0pp2PbU9qmdq2vXK7t67EHYoCZnOmVmod84p0hnTChVhrCMAAMCQqiwOavHsIi2e7QUtogmnl3fFtLTGy2fxbE27tvUyRDdVLCmta0xoXWP2TOhlYdOU4qAmFAY0sSigiYVBjS8MaGJhQBOL/PLCgCoiAZWGTUVBI6gB5AhBCuS9XW0Jvbwr5idXateyne295pXINKkooLNnFOqcGYU6ZWpExSHGMgIAAOSLSNB09KQCHT2pQJLknNPm5oSW7YxpZW1MK2pjWrE7pvWNCfXxulSaxphTY31cq+v7tn7ApNKQqTRsKg17gYuSkHe/JGwKmZeHoyBgCgfk/Q2m3Pf/FvhlYb8saKZQyt+QScGAt79QwBQ0Kejf7ygLmPbc97YxBQP+ev5+6A2MkYQgBfJGXTSpNQ3evNsr/X9EK2tj2t7av4CE5P1jOWJCWKdOLdTZMwp1xIQwB28AAIBhwsw0ozSkGaUhnef3tpCk5lhSr9fFtaI2pld3e8GL12vj2hXt//liT5JOaog5NcScpIHd92Aweee/AZMC6gx8dARHQql//fJQIP1vOCDND4Y0K9akkrCpNOQFZEpCppKwqSwc2HO/OGScW2PQEKTAkGmLO21ujmtzc0JvNCW8DM5NCa1vjGtNfbzX6UB7s195SCdOjujUqRGdPCWiCqYMBQAAGFFKwgEdObFAR04sSCtvjCW1sTGhjY1xbWjy/j6xPardbUntiiZ7nA51JHCSEs67SVLnOOj+9Tv5pwqkjX3rbtIRsOjoYVIWNpUV+H/9oEap/7eswP+bVu6tXxoykp4iDUEK7JNE0qm2Pamdbd5tl3/b2ZbQzraktrcktMkPRuxrECJVQUA6ZHxYx02K6LjKAh1XWaAJhcEB2z8AAACGj7JwQAeNC+igceE9ZbesapbkDR1pijlvyEcsqaaY829JNcacmuKdZa1xp2jCKb43Y0pGmea4U/OeNyp7LpC+Kgl5QYvSlIBGRyBjTMd9PwBSmhLs8AIdneuXhMglMhIMWZDCzM6W9BNJQUm/dc7dkLE8Iuk2SUdK2iXpIufcBn/ZlyVdIa/1X+Wce6gv+4QnnvQOttGEUzSpPffbEk7tCXl/k05t8c51mv2DdmPH3/aOx50H9N1tSdW2J/ucsHJvFQSk/SrCOmx8WEdMKNARE8JaNDasAhJeAgAAoBdm/g/ZAsn72dC7RNIpmnSK+ufK0ZRbLNnRa8Epnuz8m3RS3DklnPaUJ5yUSHrlSSf/5t1PKP1xxy3R8Vjquk3qY3U+Hu72BDz2Yph3qoDJC2iEOoIdnUGN4pCpKGSKBE2FqbeQ9zcS9BKmRoJKW2/PkBg/F0h4z1CazjwhHWUESAbGkAQpzCwo6UZJZ0raLOk5M1vinFuZstoVkmqdc/PN7GJJ35V0kZktknSxpAMlTZX0bzPbz9+mt30OS8t2tusLz9Tt6bKVyDgwJZIue3nKQa1jWSxRpMQTW3P9kvokHJDmloU0vzykhRWhPfNfzxsTUpguYAAAABgiwYCpOGAqHib9zjMDHXE/cBJ3TrGEFPMfx5JekCXe8dc5tac8npRsVEFZhZpiSS9wEPOCB6mPm2JOrYn8jIwkndTQ7tTQnpBahv75vaSnXQMaHUlRA9aRP8Rkfv6Qjr8yv1yp66X+9ZKoWsayiUVB3XzquKF/sYPInBv8BmZmx0u6xjl3lv/4y5LknPtOyjoP+es8bWYhSdslTZT0pdR1O9bzN+txn/X19fn57QEAAAAAYJQrLy/vcjV6qDILTpO0KeXxZr8s6zrOubikeknje9i2L/sEAAAAAADDBNMfAAAAAACAvDBUo6y2SJqR8ni6X5Ztnc3+cI9yeQk0e9q2x31m6zoCAAAAAADy01D1pHhO0gIzm2NmBfISYS7JWGeJpMv8+xdIesR5CTOWSLrYzCJmNkfSAknP9nGfAAAAAABgmBiSIIWfY+JKSQ9Jek3SXc65FWZ2rZmd5692k6TxZrZG0ufUmTBzhaS7JK2U9A9Jn3TOJbrb51C8nnxlZp81sxVm9qqZ/cnMCv0gzlIzW2Nmd/oBHYwwZnazmdWY2aspZePM7F9mVuX/HeuXm5n91G8TL5vZEbmrOQZaN23h+2b2uv9532dmFSnLvuy3hVVmdlZOKo0Bl60dpCz7f2bmzGyC/5hjwgjWXVsws0/5x4UVZva9lHKOCSNQN/8bDjOzZ8xsuZk9b2bH+OUcE0YwM5thZv8xs5X+9//TfjnnjaNID+0gL84Zh2R2Dww+M5sm6QlJi5xzrWZ2l6QHJL1V0r3OuTvM7JeSXnLO/SKXdcXAM7OTJTVJus05d5Bf9j1Ju51zN5jZlySNdc590czeKulT8trGsZJ+4pw7Nld1x8Dqpi28RV7vtLiZfVeS/LawSNKfJB0jf4pnSfs55xK5qT0GSrZ24JfPkPRbSftLOtI5t5NjwsjWzTHhNElflfQ251zUzCY552o4Joxc3bSDf0r6kXPuQf848AXn3KkcE0Y2M5siaYpz7kUzK5P0gqR3SLpcnDeOGj20g+nKg3NGEmeOLCFJRebl9CiWtE3S6ZLu9pffKq/xYYRxzj0uaXdG8WJ5n7mU/tkvlneS4pxzz0iq8A9UGAGytQXn3D/93meS9Iy8f0CS1xbucM5FnXPrJa2R988Hw1w3xwRJ+pGkL0hKvULBMWEE66YtfFzSDc65qL9OjV/OMWGE6qYdOElj/Pvlkrb69zkmjGDOuW3OuRf9+43yeqRPE+eNo0p37SBfzhkJUowQzrktkv5X0hvyghP18iJidSkNjWlaR5dK59w2//52SZX+fabvHd0+KOlB/z5tYRQxs8WStjjnXspYRDsYffaTdJJ5w0EfM7Oj/XLawujyGUnfN7NN8s4hv+yX0w5GCTObLelwSUvFeeOoldEOUuXsnJEgxQjhjxtbLGmOvC44JZLOzmmlkDf8JLSM7RrlzOyrkuKS/pDrumBomVmxpK9IujrXdUFeCEkaJ+k4SZ+XdJeZMSPa6PNxSZ91zs2Q9Fl5+eEwSphZqaR7JH3GOdeQuozzxtGju3aQ63NGghQjx5slrXfO7XDOxSTdK+lN8rpkdUw1m23qV4xc1R3d8fy/Hd15+zIlMEYYM7tc0tslXeo6kxHRFkaPefKC2C+Z2QZ5n/WLZjZZtIPRaLO8fFXOOfespKSkCaItjDaXyTtflKQ/q7PrNu1ghDOzsLwfpn9wznW0Ac4bR5lu2kFenDMSpBg53pB0nJkV+1dDzpA3I8p/5E3pKnn/jP6So/ph6KVO65v62S+R9H4/W/NxkupTuvdhBDKzs+XlITjPOdeSsqi7KZ4xwjjnXnHOTXLOzXbOzZb3I/UI59x2cUwYje6XdJokmdl+kgok7RTHhNFmq6RT/PunS6ry73NMGMH83wk3SXrNOffDlEWcN44i3bWDfDlnDPW+CoYD59xSM7tb0ovyuuYsk/RrSX+XdIeZfdsvoyvfCGRmf5J0qqQJZrZZ0jck3SCvC+8VkjZKere/esesL2sktUj6wJBXGIOmm7bwZUkRSf/ye3Q/45z7mD8VdMcUz3H5UzznpuYYSNnagXOuu+M/x4QRrJtjws2SbjZvOsp2SZf5V8s4JoxQ3bSDD0v6id/jtk3SR/zVOSaMbG+S9D5Jr5jZcr/sK+K8cbTprh38VHlwzsgUpAAAAAAAIC8w3AMAAAAAAOQFghQAAAAAACAvEKQAAAAAAAB5gSAFAAAAAADICwQpAAAAAABAXiBIAQAA8paZXW5mT+S6HgAAYGgQpAAAAEPCzDaY2Zt7WD7bzJyZhYayXgAAIH8QpAAAADlHYAIAAEgEKQAAwBAws9slzZT0VzNrMrMv+L0mrjCzNyQ9Iulxf/U6f53jOze3n5lZvZm9bmZnpOz3UTP7jpk9a2YNZvYXMxvnLys0s9+b2S4zqzOz58yscihfNwAA6B+CFAAAYNA5594n6Q1J5zrnSiXd5S86RdIBks6SdLJfVuGcK3XOPe0/PlbSWkkTJH1D0r0dgQjf+yV9UNIUSXFJP/XLL5NULmmGpPGSPiapdeBfHQAAGCgEKQAAQC5d45xrds71FDyokfRj51zMOXenpFWS3pay/Hbn3KvOuWZJX5f0bjMLSorJC07Md84lnHMvOOcaBuuFAACAfUeQAgAA5NKmPqyzxTnnUh5vlDS1m31slBSW1+vidkkPSbrDzLaa2ffMLLyvFQYAAIOHIAUAABgqrpeybMslaZqZWcrjmZK2pjyekbEsJmmn3/Pim865RZJOkPR2eUNDAABAniJIAQAAhkq1pLk9LN8hKZllnUmSrjKzsJldKC+HxQMpy99rZovMrFjStZLuds4lzOw0MzvYH/rRIC94kRyoFwMAAAYeQQoAADBUviPpa2ZWJ+mCzIXOuRZJ10l60p+N4zh/0VJJCyTt9Jdf4JzblbLp7ZJukbRdUqGkq/zyyZLulhegeE3SY/66AAAgT1n6EE8AAIDhw8welfR759xvc10XAACw7+hJAQAAAAAA8gJBCgAAAAAAkBcY7gEAAAAAAPICPSkAAAAAAEBeIEgBAAAAAADyAkEKAAAAAACQFwhSAAAAAACAvECQAgAAAAAA5AWCFAAAAAAAIC/8fzDwLkbxDPWhAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":"### chol\ncholestoral in mg/dl fetched via BMI sensor","metadata":{}},{"cell_type":"code","source":"px.box(x = 'trtbps', data_frame = data, template = 'plotly_dark')","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.140799Z","iopub.execute_input":"2021-08-24T17:50:46.141265Z","iopub.status.idle":"2021-08-24T17:50:46.253118Z","shell.execute_reply.started":"2021-08-24T17:50:46.141223Z","shell.execute_reply":"2021-08-24T17:50:46.251780Z"},"trusted":true},"execution_count":18,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"### chol\ncholestoral in mg/dl fetched via BMI sensor","metadata":{}},{"cell_type":"code","source":"plt.figure(figsize = (16, 7))\nsns.distplot(data['chol'])\nplt.title('Distribution Plot of cholestoral in mg/dl\\n', fontsize = 20)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.255249Z","iopub.execute_input":"2021-08-24T17:50:46.255722Z","iopub.status.idle":"2021-08-24T17:50:46.518442Z","shell.execute_reply.started":"2021-08-24T17:50:46.255670Z","shell.execute_reply":"2021-08-24T17:50:46.517205Z"},"trusted":true},"execution_count":19,"outputs":[{"output_type":"display_data","data":{"text/plain":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"lets see trtbps and chol has similar outliers ","metadata":{}},{"cell_type":"code","source":" data.chol[data.trtbps >= 171]","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.600272Z","iopub.execute_input":"2021-08-24T17:50:46.600615Z","iopub.status.idle":"2021-08-24T17:50:46.610604Z","shell.execute_reply.started":"2021-08-24T17:50:46.600559Z","shell.execute_reply":"2021-08-24T17:50:46.609116Z"},"trusted":true},"execution_count":21,"outputs":[{"execution_count":21,"output_type":"execute_result","data":{"text/plain":"8 199\n101 270\n110 325\n203 274\n223 288\n241 249\n248 283\n260 228\n266 327\nName: chol, dtype: int64"},"metadata":{}}]},{"cell_type":"markdown","source":"the values of trtbps outliers are well in range of cholestrol level","metadata":{}},{"cell_type":"markdown","source":"### fbs\n(fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)","metadata":{}},{"cell_type":"code","source":"\npx.bar(data_frame = data, x = list(data.fbs.value_counts().keys()), y = list(data.fbs.value_counts()), \n color = list(data.fbs.value_counts().keys()), template = 'plotly_dark',\n labels={\n 'x': \"fasting blood sugar > 120 mg/dl\",\n 'y': \"Count\",\n 'color':'fasting blood sugar > 120 mg/dl'\n \n },\n title = 'Number of patients having fasting blood sugar > 120 mg/dl')\n","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.612405Z","iopub.execute_input":"2021-08-24T17:50:46.612784Z","iopub.status.idle":"2021-08-24T17:50:46.703375Z","shell.execute_reply.started":"2021-08-24T17:50:46.612750Z","shell.execute_reply":"2021-08-24T17:50:46.702342Z"},"trusted":true},"execution_count":22,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"code","source":"import plotly.graph_objects as go\n\nfbs_0_1 = data.fbs[(data.fbs == 0) & (data.output == 1)]\nfbs_0_0 = data.fbs[(data.fbs == 0) & (data.output == 0)]\nfbs_1_1 = data.fbs[(data.fbs == 1) & (data.output == 1)]\nfbs_1_0 = data.fbs[(data.fbs == 1) & (data.output == 0)]\n\ny_fbs_1 = [len(fbs_0_1.values), len(fbs_1_1.values)]\ny_fbs_0 = [len(fbs_0_0.values), len(fbs_1_0.values)]\n\nfig = go.Figure()\nfig.add_trace(go.Bar(\n x=[0,1],\n y=y_fbs_1,\n name='Heart Attack',\n marker_color='indianred'\n))\nfig.add_trace(go.Bar(\n x=[0,1],\n y=y_fbs_0,\n name='Safe',\n marker_color='lightsalmon'\n))\n\n# Here we modify the tickangle of the xaxis, resulting in rotated labels.\nfig.update_layout(barmode='group', xaxis_tickangle=-45)\nfig.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.704849Z","iopub.execute_input":"2021-08-24T17:50:46.705159Z","iopub.status.idle":"2021-08-24T17:50:46.734276Z","shell.execute_reply.started":"2021-08-24T17:50:46.705128Z","shell.execute_reply":"2021-08-24T17:50:46.732958Z"},"trusted":true},"execution_count":23,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"Variation in sugar level is not the sole cause of a heart attack","metadata":{}},{"cell_type":"markdown","source":"### restecg\nresting electrocardiographic results","metadata":{}},{"cell_type":"code","source":"\npx.bar(data_frame = data, x = list(data.restecg.value_counts().keys()), y = list(data.restecg.value_counts()), \n color = list(data.restecg.value_counts().keys()),\n labels={\n 'x': \"resting electrocardiographic results\",\n 'y': \"Count\",\n 'color':'resting electrocardiographic results'\n \n },\n title = 'Number of patients per resting electrocardiographic results')\n","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.737761Z","iopub.execute_input":"2021-08-24T17:50:46.738162Z","iopub.status.idle":"2021-08-24T17:50:46.843963Z","shell.execute_reply.started":"2021-08-24T17:50:46.738124Z","shell.execute_reply":"2021-08-24T17:50:46.842720Z"},"trusted":true},"execution_count":24,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"raw","source":"We can see that if the result is 1 we have more chances of survival compared to 0 and 2 \nsince we have least data points which has category of '2' it the results for label 2 are ambiguous. Thus it is better we use one hot encoding for the feature","metadata":{}},{"cell_type":"code","source":"data['restecg'] = data['restecg'].map({0:\"restecg_0\", 1: \"restecg_1\", 2: 'restecg_2'}) \ndata.head()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.878693Z","iopub.execute_input":"2021-08-24T17:50:46.879177Z","iopub.status.idle":"2021-08-24T17:50:46.909257Z","shell.execute_reply.started":"2021-08-24T17:50:46.879145Z","shell.execute_reply":"2021-08-24T17:50:46.907704Z"},"trusted":true},"execution_count":26,"outputs":[{"execution_count":26,"output_type":"execute_result","data":{"text/plain":" age sex cp trtbps chol fbs restecg thalachh exng \\\n0 63 1_gender Intensity_3 145 233 1 restecg_0 150 0 \n1 37 1_gender Intensity_2 130 250 0 restecg_1 187 0 \n2 41 0_gender Intensity_1 130 204 0 restecg_0 172 0 \n3 56 1_gender Intensity_1 120 236 0 restecg_1 178 0 \n4 57 0_gender Intensity_0 120 354 0 restecg_1 163 1 \n\n oldpeak slp caa thall output \n0 2.3 0 0 1 1 \n1 3.5 0 0 2 1 \n2 1.4 2 0 2 1 \n3 0.8 2 0 2 1 \n4 0.6 2 0 2 1 ","text/html":"
\n\n
\n \n
\n
\n
age
\n
sex
\n
cp
\n
trtbps
\n
chol
\n
fbs
\n
restecg
\n
thalachh
\n
exng
\n
oldpeak
\n
slp
\n
caa
\n
thall
\n
output
\n
\n \n \n
\n
0
\n
63
\n
1_gender
\n
Intensity_3
\n
145
\n
233
\n
1
\n
restecg_0
\n
150
\n
0
\n
2.3
\n
0
\n
0
\n
1
\n
1
\n
\n
\n
1
\n
37
\n
1_gender
\n
Intensity_2
\n
130
\n
250
\n
0
\n
restecg_1
\n
187
\n
0
\n
3.5
\n
0
\n
0
\n
2
\n
1
\n
\n
\n
2
\n
41
\n
0_gender
\n
Intensity_1
\n
130
\n
204
\n
0
\n
restecg_0
\n
172
\n
0
\n
1.4
\n
2
\n
0
\n
2
\n
1
\n
\n
\n
3
\n
56
\n
1_gender
\n
Intensity_1
\n
120
\n
236
\n
0
\n
restecg_1
\n
178
\n
0
\n
0.8
\n
2
\n
0
\n
2
\n
1
\n
\n
\n
4
\n
57
\n
0_gender
\n
Intensity_0
\n
120
\n
354
\n
0
\n
restecg_1
\n
163
\n
1
\n
0.6
\n
2
\n
0
\n
2
\n
1
\n
\n \n
\n
"},"metadata":{}}]},{"cell_type":"markdown","source":"### thalachh\nmaximum heart rate achieved","metadata":{}},{"cell_type":"code","source":"plt.figure(figsize = (16, 7))\nsns.distplot(data['thalachh'])\nplt.title('Distribution Plot of maximum heart rate achieved\\n', fontsize = 20)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:46.911126Z","iopub.execute_input":"2021-08-24T17:50:46.911798Z","iopub.status.idle":"2021-08-24T17:50:47.181288Z","shell.execute_reply.started":"2021-08-24T17:50:46.911727Z","shell.execute_reply":"2021-08-24T17:50:47.179948Z"},"trusted":true},"execution_count":27,"outputs":[{"output_type":"display_data","data":{"text/plain":"
"},"metadata":{}}]},{"cell_type":"code","source":"px.bar(data_frame = data, x = 'age', y = 'thalachh', color = 'age', template = 'plotly_dark',\n labels={\n 'x': \"Age\",\n 'y': \"maximum heart beat\",\n 'color':'Age'},\n title = 'Age to maximum heart beat(sum)')","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:47.302751Z","iopub.execute_input":"2021-08-24T17:50:47.303354Z","iopub.status.idle":"2021-08-24T17:50:47.381054Z","shell.execute_reply.started":"2021-08-24T17:50:47.303308Z","shell.execute_reply":"2021-08-24T17:50:47.380069Z"},"trusted":true},"execution_count":29,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"### exng\nexercise induced angina (1 = yes; 0 = no)","metadata":{}},{"cell_type":"code","source":"\npx.bar(data_frame = data, x = list(data.exng.value_counts().keys()), y = list(data.exng.value_counts()), \n color = list(data.exng.value_counts().keys()), template = 'plotly_dark',\n labels={\n 'x': \"exercise induced angina\",\n 'y': \"Count\",\n 'color':'exercise induced angina'\n \n },\n title = 'Number of patients having exercise induced angina')\n","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:50:59.714687Z","iopub.execute_input":"2021-08-24T17:50:59.715274Z","iopub.status.idle":"2021-08-24T17:50:59.797785Z","shell.execute_reply.started":"2021-08-24T17:50:59.715236Z","shell.execute_reply":"2021-08-24T17:50:59.796554Z"},"trusted":true},"execution_count":31,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"code","source":"import plotly.graph_objects as go\n\nexng_0_1 = data.exng[(data.exng == 0) & (data.output == 1)]\nexng_0_0 = data.exng[(data.exng == 0) & (data.output == 0)]\nexng_1_1 = data.exng[(data.exng == 1) & (data.output == 1)]\nexng_1_0 = data.exng[(data.exng == 1) & (data.output == 0)]\n\ny_exng_1 = [len(exng_0_1.values), len(exng_1_1.values)]\ny_exng_0 = [len(exng_0_0.values), len(exng_1_0.values)]\n\nfig = go.Figure()\nfig.add_trace(go.Bar(\n x=[0,1],\n y=y_exng_1,\n name='Heart Attack',\n marker_color='indianred'\n))\nfig.add_trace(go.Bar(\n x=[0,1],\n y=y_exng_0,\n name='Safe',\n marker_color='lightsalmon'\n))\n\n# Here we modify the tickangle of the xaxis, resulting in rotated labels.\nfig.update_layout(barmode='group', xaxis_tickangle=-45)\nfig.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:51:00.387656Z","iopub.execute_input":"2021-08-24T17:51:00.388234Z","iopub.status.idle":"2021-08-24T17:51:00.412075Z","shell.execute_reply.started":"2021-08-24T17:51:00.388183Z","shell.execute_reply":"2021-08-24T17:51:00.411098Z"},"trusted":true},"execution_count":32,"outputs":[{"output_type":"display_data","data":{"text/html":"
"},"metadata":{}}]},{"cell_type":"markdown","source":"We can see that not getting exercise induced angina may have a greater chance of heart attack","metadata":{}},{"cell_type":"markdown","source":"### oldpeak\nPrevious peak","metadata":{}},{"cell_type":"code","source":"plt.figure(figsize = (16, 7))\nsns.distplot(data['oldpeak'])\nplt.title('Distribution Plot of Previous peak achieved\\n', fontsize = 20)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2021-08-24T17:51:02.145990Z","iopub.execute_input":"2021-08-24T17:51:02.146632Z","iopub.status.idle":"2021-08-24T17:51:02.366983Z","shell.execute_reply.started":"2021-08-24T17:51:02.146546Z","shell.execute_reply":"2021-08-24T17:51:02.365646Z"},"trusted":true},"execution_count":33,"outputs":[{"output_type":"display_data","data":{"text/plain":"