|
6 | 6 | * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group |
7 | 7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | 8 | * |
9 | | - * $PostgreSQL: pgsql/src/backend/optimizer/geqo/geqo_selection.c,v 1.18 2004/12/31 21:59:58 pgsql Exp $ |
| 9 | + * $PostgreSQL: pgsql/src/backend/optimizer/geqo/geqo_selection.c,v 1.19 2005/06/14 14:21:16 tgl Exp $ |
10 | 10 | * |
11 | 11 | *------------------------------------------------------------------------- |
12 | 12 | */ |
|
44 | 44 |
|
45 | 45 | static int linear(int max, double bias); |
46 | 46 |
|
47 | | -/* geqo_selection |
48 | | - * |
| 47 | + |
| 48 | +/* |
| 49 | + * geqo_selection |
49 | 50 | * according to bias described by input parameters, |
50 | | - * second genes are selected from the pool |
| 51 | + * first and second genes are selected from the pool |
51 | 52 | */ |
52 | 53 | void |
53 | 54 | geqo_selection(Chromosome *momma, Chromosome *daddy, Pool *pool, double bias) |
54 | 55 | { |
55 | 56 | int first, |
56 | 57 | second; |
57 | 58 |
|
58 | | - first = (int) linear(pool->size, bias); |
59 | | - second = (int) linear(pool->size, bias); |
| 59 | + first = linear(pool->size, bias); |
| 60 | + second = linear(pool->size, bias); |
60 | 61 |
|
61 | 62 | if (pool->size > 1) |
62 | 63 | { |
63 | 64 | while (first == second) |
64 | | - second = (int) linear(pool->size, bias); |
| 65 | + second = linear(pool->size, bias); |
65 | 66 | } |
66 | 67 |
|
67 | 68 | geqo_copy(momma, &pool->data[first], pool->string_length); |
68 | 69 | geqo_copy(daddy, &pool->data[second], pool->string_length); |
69 | 70 | } |
70 | 71 |
|
71 | | -/* linear |
| 72 | +/* |
| 73 | + * linear |
72 | 74 | * generates random integer between 0 and input max number |
73 | 75 | * using input linear bias |
74 | 76 | * |
75 | 77 | * probability distribution function is: f(x) = bias - 2(bias - 1)x |
76 | 78 | * bias = (prob of first rule) / (prob of middle rule) |
77 | | - * |
78 | 79 | */ |
79 | | - |
80 | 80 | static int |
81 | 81 | linear(int pool_size, double bias) /* bias is y-intercept of linear |
82 | 82 | * distribution */ |
83 | 83 | { |
84 | 84 | double index; /* index between 0 and pop_size */ |
85 | 85 | double max = (double) pool_size; |
86 | 86 |
|
87 | | - index = max * (bias - sqrt((bias * bias) - 4.0 * (bias - 1.0) * geqo_rand())) |
88 | | - / 2.0 / (bias - 1.0); |
| 87 | + /* |
| 88 | + * If geqo_rand() returns exactly 1.0 then we will get exactly max from |
| 89 | + * this equation, whereas we need 0 <= index < max. Also it seems possible |
| 90 | + * that roundoff error might deliver values slightly outside the range; |
| 91 | + * in particular avoid passing a value slightly less than 0 to sqrt(). |
| 92 | + * If we get a bad value just try again. |
| 93 | + */ |
| 94 | + do { |
| 95 | + double sqrtval; |
| 96 | + |
| 97 | + sqrtval = (bias * bias) - 4.0 * (bias - 1.0) * geqo_rand(); |
| 98 | + if (sqrtval > 0.0) |
| 99 | + sqrtval = sqrt(sqrtval); |
| 100 | + index = max * (bias - sqrtval) / 2.0 / (bias - 1.0); |
| 101 | + } while (index < 0.0 || index >= max); |
89 | 102 |
|
90 | 103 | return (int) index; |
91 | 104 | } |
0 commit comments