|
| 1 | +// 1. Find the longer one, we assume num1 |
| 2 | +// 2. Look through the spliter index i (i belongs to left part) |
| 3 | +// for num1 between [m/2-n,m/2+n] (left closed, right closed) by bisection method |
| 4 | +// i start at m/2 |
| 5 | +// 3. Find the complement index j (j belongs to left part) = (m + n - 1) / 2 - i |
| 6 | +// 4. Check whether i and j is valid, num1[i] <= num2[j+1] and num1[i+1] >= num2[j] etc. |
| 7 | +// If num1[i] > num2[j+1], i moves left. If num1[i+1] < num2[j], i moves right. |
| 8 | +// The index i moves by bisection method. |
| 9 | +// The index i moves left to (m / 2 + i - n) / 2, moves right to (m / 2 + n + i) / 2. |
| 10 | + |
| 11 | +// The time complexity is O(log2(min(m,n))) |
| 12 | +// For m/2 it is always rounded down |
| 13 | +pub fn find_median_sorted_arrays(num1: &[usize], num2: &[usize]) -> Option<f32> { |
| 14 | + let m: usize = num1.len(); |
| 15 | + let n: usize = num2.len(); |
| 16 | + let longer: &[usize]; |
| 17 | + let shorter: &[usize]; |
| 18 | + let l_len: usize; |
| 19 | + let s_len: usize; |
| 20 | + if m >= n { |
| 21 | + longer = num1; |
| 22 | + shorter = num2; |
| 23 | + l_len = m; |
| 24 | + s_len = n; |
| 25 | + } else { |
| 26 | + longer = num2; |
| 27 | + shorter = num1; |
| 28 | + l_len = n; |
| 29 | + s_len = m; |
| 30 | + } |
| 31 | + |
| 32 | + let mut i: usize = l_len / 2; |
| 33 | + let mut j: usize = 0; |
| 34 | + let mut done = false; |
| 35 | + |
| 36 | + while !done { |
| 37 | + j = (m + n - 1) / 2 - i; |
| 38 | + if j > 0 { |
| 39 | + j - 1; |
| 40 | + } |
| 41 | + let c1: bool = j == s_len - 1 || longer[i] <= shorter[j + 1]; |
| 42 | + let c2: bool = i == l_len - 1 || longer[i + 1] >= shorter[j]; |
| 43 | + if c1 && c2 { |
| 44 | + done = true; |
| 45 | + } else if c2 { |
| 46 | + // move left |
| 47 | + if i > 1 { |
| 48 | + i = (m / 2 + i - n) / 2; |
| 49 | + } else { |
| 50 | + i = 0; |
| 51 | + } |
| 52 | + } else { |
| 53 | + // move right |
| 54 | + if i == l_len - 2 { |
| 55 | + i = l_len - 1; |
| 56 | + } else { |
| 57 | + i = (m / 2 + n + i) / 2; |
| 58 | + } |
| 59 | + } |
| 60 | + } |
| 61 | + |
| 62 | + if (l_len + s_len) % 2 == 1 { |
| 63 | + if shorter[j] > longer[i] { |
| 64 | + if shorter[j] > longer[i - i] { |
| 65 | + return Some(longer[i] as f32); |
| 66 | + } else if shorter[j] < longer[i - 1] { |
| 67 | + return Some(shorter[j] as f32); |
| 68 | + } else { |
| 69 | + return None; |
| 70 | + } |
| 71 | + } else if shorter[j] < longer[i] { |
| 72 | + if longer[i - 1] > shorter[j] { |
| 73 | + return Some(longer[i - 1] as f32); |
| 74 | + } else if longer[i - 1] < shorter[j] { |
| 75 | + return Some(shorter[j] as f32); |
| 76 | + } else { |
| 77 | + return None; |
| 78 | + } |
| 79 | + } else { |
| 80 | + return None; |
| 81 | + } |
| 82 | + } else { |
| 83 | + if i >= 1 && longer[i - 1] > shorter[j] && longer[i] > shorter[j] { |
| 84 | + return Some((longer[i - 1] as f32 + longer[i] as f32) / 2.0); |
| 85 | + } else if j > 0 && shorter[j - 1] > longer[i] && shorter[j] > longer[i] { |
| 86 | + return Some((shorter[j - 1] as f32 + shorter[j] as f32) / 2.0); |
| 87 | + } else { |
| 88 | + return Some((longer[i] as f32 + shorter[j] as f32) / 2.0); |
| 89 | + } |
| 90 | + } |
| 91 | +} |
| 92 | + |
| 93 | +#[cfg(test)] |
| 94 | +mod test { |
| 95 | + use super::find_median_sorted_arrays; |
| 96 | + |
| 97 | + #[test] |
| 98 | + fn test_find_median_sorted_arrays() { |
| 99 | + assert_eq!(find_median_sorted_arrays(&[1, 3], &[2]), Some(2.0)); |
| 100 | + |
| 101 | + assert_eq!(find_median_sorted_arrays(&[2], &[1, 3]), Some(2.0)); |
| 102 | + |
| 103 | + assert_eq!(find_median_sorted_arrays(&[1, 2], &[3, 4]), Some(2.5)); |
| 104 | + |
| 105 | + assert_eq!(find_median_sorted_arrays(&[3, 4], &[1, 2]), Some(2.5)); |
| 106 | + |
| 107 | + assert_eq!(find_median_sorted_arrays(&[3, 4], &[5]), Some(4.0)); |
| 108 | + |
| 109 | + assert_eq!(find_median_sorted_arrays(&[5], &[3, 4]), Some(4.0)); |
| 110 | + |
| 111 | + assert_eq!(find_median_sorted_arrays(&[3, 4, 5], &[5]), Some(4.5)); |
| 112 | + |
| 113 | + assert_eq!(find_median_sorted_arrays(&[5], &[3, 4, 5]), Some(4.5)); |
| 114 | + |
| 115 | + assert_eq!(find_median_sorted_arrays(&[1, 2], &[1, 2]), Some(1.5)); |
| 116 | + |
| 117 | + assert_eq!(find_median_sorted_arrays(&[1, 2, 3], &[1, 2, 3]), Some(2.0)); |
| 118 | + |
| 119 | + assert_eq!(find_median_sorted_arrays(&[1, 2, 3, 4], &[1, 2, 3]), None); |
| 120 | + |
| 121 | + assert_eq!(find_median_sorted_arrays(&[1, 2, 3, 4], &[10, 11, 12, 13]), |
| 122 | + Some(7.0)); |
| 123 | + |
| 124 | + assert_eq!(find_median_sorted_arrays(&[10, 11, 12, 13], &[1, 2, 3, 4]), |
| 125 | + Some(7.0)); |
| 126 | + |
| 127 | + assert_eq!(find_median_sorted_arrays(&[1, 2, 3, 4], &[3, 6, 7, 8]), |
| 128 | + Some(3.5)); |
| 129 | + |
| 130 | + assert_eq!(find_median_sorted_arrays(&[3, 6, 7, 8], &[1, 2, 3, 4]), |
| 131 | + Some(3.5)); |
| 132 | + |
| 133 | + assert_eq!(find_median_sorted_arrays(&[3, 6, 7, 8, 11, 12, 18, 19], |
| 134 | + &[1, 2, 3, 4, 21, 22, 44]), |
| 135 | + Some(8.0)); |
| 136 | + |
| 137 | + assert_eq!(find_median_sorted_arrays(&[3, 6, 7, 8, 11, 12, 18, 19], |
| 138 | + &[1, 2, 3, 4, 21, 22, 44, 45]), |
| 139 | + Some(9.5)); |
| 140 | + } |
| 141 | +} |
0 commit comments