- Given a binary tree, find out the level, which is having maximum sum using non recursive algorithm.
- Traverse the binary tree using level order traversal or breadth first search (BFS) algorithm.
- Root node of binary tree is at level 0.
- We can find out the level of rest of nodes wrt. root node.
- We have discussed the similar problem, find out the height of binary tree using level order traversal.

Example: Find level having maximum sum in a binary tree (java)
Find out the level, which having maximum sum, for a given binary tree shown in Fig 2. Let us calculate the sum at each level.
| Level | Nodes | Sum |
|---|---|---|
| 0 | A | 55 |
| 1 | B,C | 90 |
| 2 | D,E,F,G | 240 |
| 3 | H,I,J,K | 185 |

Algorithm: find level having max sum in a binary tree (iterative method)
- Root is at level 0, push root node to queue.
- Create variable to store maxSum & level.
- Push null as level delimiter, to the queue.
- Iterate through the Queue
- Calculate the local sum
- Pop node from queue
- If popped up node is null,
- We are at next level.
- Update maxSum if it is less than local sum.
- Save the level of local sum.
- Update maxSum if it is less than local sum.
- We are at next level.
- Add next level children (left or/and right nodes)
- Once we exit the loop, we will get the maximum sum and level.
Time complexity of algorithm is O(n).
Program: find out level having max sum in java (breadth first search algo.)
1.) MaxSumLevel Class:
- MaxSumLevel class is responsible for finding the level, which is having maximum sum.
- Traverse the binary tree using level order traversal or breadth first search algorithm.
package org.learn.Question;
import java.util.LinkedList;
import java.util.Queue;
public class MaxSumLevel {
public static void maxSumLevel(Node root) {
if (root == null) {
System.out.println("Tree is empty");
return;
}
Queue<Node> queue = new LinkedList<Node>();
queue.offer(root);
// level delimiter
queue.offer(null);
int maxSum = 0;
int level = 0;
// default root level
int localLevel = 0;
int localSum = 0;
while (!queue.isEmpty()) {
Node node = queue.poll();
// Level change
if (null == node) {
if (!queue.isEmpty()) {
// level delimiter
queue.offer(null);
}
if (localSum > maxSum) {
maxSum = localSum;
level = localLevel;
}
// Reset the level sum for next level calculation
localSum = 0;
localLevel++;
} else {
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
localSum += node.data;
}
}
System.out.println("Max Sum = " + maxSum + " is at Level = " + level);
}
}
2.) Node Class:
- Node class is representing the nodes of a binary tree.
package org.learn.Question;
public class Node {
public int data;
public Node left;
public Node right;
public Node(int num) {
this.data = num;
this.left = null;
this.right = null;
}
public Node() {
this.left = null;
this.right = null;
}
public static Node createNode(int number) {
return new Node(number);
}
}
3.) App Class:
- We are creating the binary tree in main method.
- We calling the method of MaxSumLevel class, to find the level, which is having maximum sum.
package org.learn.Client;
import org.learn.Question.MaxSumLevel;
import org.learn.Question.Node;
public class App {
public static void main(String[] args) {
// root level 0
Node A = Node.createNode(55);
// Level 1
Node B = Node.createNode(50);
Node C = Node.createNode(40);
// Level 2
Node D = Node.createNode(25);
Node E = Node.createNode(80);
Node F = Node.createNode(45);
Node G = Node.createNode(90);
// Level 3
Node H = Node.createNode(10);
Node I = Node.createNode(35);
Node J = Node.createNode(65);
Node K = Node.createNode(75);
// connect Level 0 and 1
A.left = B;
A.right = C;
// connect level 1 and level 2
B.left = D;
B.right = E;
C.left = F;
C.right = G;
// connect level 2 and level 3
F.left = H;
F.right = I;
G.left = J;
G.right = K;
MaxSumLevel.maxSumLevel(A);
}
}
Output: level in a binary having maximum sum using java
Max Sum = 240 is at Level = 2
