About
DL4J takes advantage of the latest distributed computing frameworks including Apache Spark and Hadoop to accelerate training. On multi-GPUs, it is equal to Caffe in performance. The libraries are completely open-source, Apache 2.0, and maintained by the developer community and Konduit team. Deeplearning4j is written in Java and is compatible with any JVM language, such as Scala, Clojure, or Kotlin. The underlying computations are written in C, C++, and Cuda. Keras will serve as the Python API. Eclipse Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Apache Spark, DL4J brings AI to business environments for use on distributed GPUs and CPUs. There are a lot of parameters to adjust when you're training a deep-learning network. We've done our best to explain them, so that Deeplearning4j can serve as a DIY tool for Java, Scala, Clojure, and Kotlin programmers.
|
About
The Java™ Programming Language is a general-purpose, concurrent, strongly typed, class-based object-oriented language. It is normally compiled to the bytecode instruction set and binary format defined in the Java Virtual Machine Specification. In the Java programming language, all source code is first written in plain text files ending with the .java extension. Those source files are then compiled into .class files by the javac compiler. A .class file does not contain code that is native to your processor; it instead contains bytecodes — the machine language of the Java Virtual Machine1 (Java VM). The java launcher tool then runs your application with an instance of the Java Virtual Machine.
|
About
Apache Spark's MLlib is a scalable machine learning library that integrates seamlessly with Spark's APIs, supporting Java, Scala, Python, and R. It offers a comprehensive suite of algorithms and utilities, including classification, regression, clustering, collaborative filtering, and tools for constructing machine learning pipelines. MLlib's high-quality algorithms leverage Spark's iterative computation capabilities, delivering performance up to 100 times faster than traditional MapReduce implementations. It is designed to operate across diverse environments, running on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or in the cloud, and accessing various data sources such as HDFS, HBase, and local files. This flexibility makes MLlib a robust solution for scalable and efficient machine learning tasks within the Apache Spark ecosystem.
|
About
Unlambda is a programming language. Nothing remarkable there. The originality of Unlambda is that it stands as the unexpected intersection of two marginal families of languages. Functional programming languages, of which the canonical representative is Scheme (a Lisp dialect). This means that the basic object manipulated by the language (and indeed the only one as far as Unlambda is concerned) is the function. Rather, Unlambda uses a functional approach to programming: the only form of objects it manipulates are functions. Each function takes a function as an argument and returns a function. Apart from a binary “apply” operation, Unlambda provides several built-in functions (the most important ones being the K and S combinators). User-defined functions can be created, but not saved or named, because Unlambda does not have any variables.
|
|||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||
Audience
Researchers, developers and professionals requiring an open-source, distributed, deep learning library for the JVM
|
Audience
Developers looking for a Programming Language solution
|
Audience
Data scientists and engineers wanting a machine learning solution for efficient data processing and analysis within the Apache Spark framework
|
Audience
Developers in need of an advanced Programming Language solution
|
|||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||
API
Offers API
|
API
Offers API
|
API
Offers API
|
API
Offers API
|
|||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
|||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||
Reviews/
|
Reviews/
|
Reviews/
|
Reviews/
|
|||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||
Company InformationDeeplearning4j
Founded: 2019
Japan
deeplearning4j.org
|
Company InformationOracle
docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
|
Company InformationApache Software Foundation
Founded: 1995
United States
spark.apache.org/mllib/
|
Company InformationUnlambda
www.madore.org/~david/programs/unlambda/
|
|||
Alternatives |
Alternatives |
Alternatives |
Alternatives |
|||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
Categories |
Categories |
|||
Integrations
Allure Report
AsyncAPI
AtomicJar
BBEdit
Claude
Claude Sonnet 3.7
Codacy
CodeGeeX
CodeScene
GPT-4o mini
|
Integrations
Allure Report
AsyncAPI
AtomicJar
BBEdit
Claude
Claude Sonnet 3.7
Codacy
CodeGeeX
CodeScene
GPT-4o mini
|
Integrations
Allure Report
AsyncAPI
AtomicJar
BBEdit
Claude
Claude Sonnet 3.7
Codacy
CodeGeeX
CodeScene
GPT-4o mini
|
Integrations
Allure Report
AsyncAPI
AtomicJar
BBEdit
Claude
Claude Sonnet 3.7
Codacy
CodeGeeX
CodeScene
GPT-4o mini
|
|||
|
|
|
|
|