Skip to main content
Stack Overflow for Teams is now Stack Internal: See how we’re powering the human intelligence layer of enterprise AI. Read more >
Mentioned reference to IEEE .
Source Link
Carl Smotricz
  • 68k
  • 18
  • 129
  • 170

From Wikipedia has this to say in the same context with a link to IEEE 754:

On a typical computer system, a 'double precision' (64-bit) binary floating-point number has a coefficient of 53 bits (one of which is implied), an exponent of 11 bits, and one sign bit.

2^53 is just over 9 * 10^15.

From Wikipedia:

On a typical computer system, a 'double precision' (64-bit) binary floating-point number has a coefficient of 53 bits (one of which is implied), an exponent of 11 bits, and one sign bit.

2^53 is just over 9 * 10^15.

Wikipedia has this to say in the same context with a link to IEEE 754:

On a typical computer system, a 'double precision' (64-bit) binary floating-point number has a coefficient of 53 bits (one of which is implied), an exponent of 11 bits, and one sign bit.

2^53 is just over 9 * 10^15.

Source Link
Carl Smotricz
  • 68k
  • 18
  • 129
  • 170

From Wikipedia:

On a typical computer system, a 'double precision' (64-bit) binary floating-point number has a coefficient of 53 bits (one of which is implied), an exponent of 11 bits, and one sign bit.

2^53 is just over 9 * 10^15.