I'm implement my kernel in a multithreaded "host"-program, where every host thread is calling the kernel. I've got a problem with the use of constant memory. In the constant memory will be placed some parameters, but for every thread they are different. I build a sample where the problem occurs, too.
This is the kernel
__global__ void Kernel( int *aiOutput, int Length )
{
int id = threadIdx.x + blockIdx.x * blockDim.x;
int iValue = 0;
// bound check
if( id < Length )
{
if( id % 3 == 0 )
iValue = c_iaCoeff[2];
else if( id % 2 == 0 )
iValue = c_iaCoeff[1];
else
iValue = c_iaCoeff[0];
aiOutput[id] = iValue;
}
__syncthreads();
}
And a pthread is calling this function.
void* WrapperCopy( void* params )
{
// choose cuda device to perform on
CUDA_CHECK_RETURN( cudaSetDevice( 0 ) );
// cast of params
SParams *_params = (SParams*)params;
// copy coefficients to constant memory
CUDA_CHECK_RETURN( cudaMemcpyToSymbol( c_iaCoeff, _params->h_piCoeff, 3*sizeof(int) ) );
// loop kernel
for( int i=0; i<100; i++ )
{
// perfrom kernel
Kernel<<< BLOCKCOUNT, BLOCKSIZE >>>( _params->d_piArray, _params->iLength );
}
// copy data back from gpu
CUDA_CHECK_RETURN( cudaMemcpy(
_params->h_piArray, _params->d_piArray, BLOCKSIZE*BLOCKCOUNT*sizeof(int), cudaMemcpyDeviceToHost ) );
return NULL;
}
Constant memory is declared as this.
__constant__ int c_iaCoeff[ 3 ];
For every host thread has diffrent values in h_piCoeff and will copy that to the constant memory.
Now I get for every pthread call the same results, becaus all of them got the same values in c_iaCoeff.
I think that is the problem of how constant memory works and have to be declared in a context - in the sample there will be only one c_iaCoeff declared for all pthreads calling and the kernels called by pthreads will get the values of the last cudaMemcpyToSymbol. Is that right?
Now I've tried to change my constant memory in a two-dimensional array. The second dimension will be the values as before, but the first will be the index of the used pthread.
__constant__ int c_iaCoeff2[ THREADS ][ 3 ];
In the kernels the use of it will be in this way.
iValue = c_iaCoeff2[iTId][2];
But I don't know if it's possible to use constant memory in this way, is it? Also I got an error when I try to copy data to the constant memory.
CUDA_CHECK_RETURN( cudaMemcpyToSymbol( c_iaCoeff[_params->iTId], _params->h_piCoeff, 3*sizeof(int) ) );
General is it possible to use constant memory as a two-dimensional array and if yes, where is my failure?