I think your code works. Here's what I see:
The data:
import pandas as pd
data = """2009-12-10,5,6,7,8,9
2009-12-11,7,6,6,7,9"""
Read the data from the csv.
ts = pd.read_csv(pd.io.parsers.StringIO(data),
names=['timepoint', 'a','b','c','d','e'],
parse_dates=True,
index_col=0)
That looks like this
In [59]: ts
Out[59]:
a b c d e
timepoint
2009-12-10 5 6 7 8 9
2009-12-11 7 6 6 7 9
And the index is a time series
In [60]: ts.index
Out[60]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2009-12-10 00:00:00, 2009-12-11 00:00:00]
Length: 2, Freq: None, Timezone: None
Can you give this a try and post an update if you get different results?
UPDATE: In response to @prre72's comment regarding column headers in the csv file:
If the csv has 5 column headers with the index column being unlabeled, you can do this:
In [17]:
data = """"a","b","c","d","e"
2009-12-10,5,6,7,8,9
2009-12-11,7,6,6,7,9"""
ts = pd.read_csv(pd.io.parsers.StringIO(data),
parse_dates=True,
index_col=0)
In [18]: ts
Out[18]:
a b c d e
2009-12-10 5 6 7 8 9
2009-12-11 7 6 6 7 9
In [19]: ts.index
Out[19]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2009-12-10 00:00:00, 2009-12-11 00:00:00]
Length: 2, Freq: None, Timezone: None
repr(open(file_name).read()[:50])?