I have an open source energy monitor (http://openenergymonitor.org) which logs the power usage of my house every five seconds, so I thought this would be a perfect application to play with MongoDB. I have a Flask Python application running in Apache using MongoEngine to interface with MongoDB.
Now I am running all of this on a RaspberryPi, so I'm not expecting incredible performance, but a simple query is taking around 20 seconds, which seems slow even for this limited hardware.
I have the following model:
class Reading(db.Document):
created_at = db.DateTimeField(default=datetime.datetime.now, required=True)
created_at_year = db.IntField(default=datetime.datetime.now().year, required=True)
created_at_month = db.IntField(default=datetime.datetime.now().month, required=True)
created_at_day = db.IntField(default=datetime.datetime.now().day, required=True)
created_at_hour = db.IntField(default=datetime.datetime.now().hour, required=True)
battery = db.IntField()
power = db.IntField()
meta = {
'indexes': ['created_at_year', 'created_at_month', 'created_at_day', 'created_at_hour']
}
I currently have around 36,000 readings stored from the last couple of days. The following code runs super quick:
def get_readings_count():
count = '<p>Count: %d</p>' % Reading.objects.count()
return count
def get_last_24_readings_as_json():
readings = Reading.objects.order_by('-id')[:24]
result = "["
for reading in reversed(readings):
result += str(reading.power) + ","
result = result[:-1]
result += "]"
return result
But doing a simple filter:
def get_today_readings_count():
todaycount = '<p>Today: %d</p>' % Reading.objects(created_at_year=2014, created_at_month=1, created_at_day=28).count()
return todaycount
Takes around 20 seconds - there are around 11,000 readings for today.
Shall I give up expecting anything more of my Pi, or is there some tuning I can do to get more performance from MongoDB?
Mongo 2.1.1 on Debian Wheezy
Update 29/1/2014:
In response to an answer below, here are the results of getIndexes() and explain():
> db.reading.getIndexes()
[
{
"v" : 1,
"key" : {
"_id" : 1
},
"ns" : "sensor_network.reading",
"name" : "_id_"
},
{
"v" : 1,
"key" : {
"created_at_year" : 1
},
"ns" : "sensor_network.reading",
"name" : "created_at_year_1",
"background" : false,
"dropDups" : false
},
{
"v" : 1,
"key" : {
"created_at_month" : 1
},
"ns" : "sensor_network.reading",
"name" : "created_at_month_1",
"background" : false,
"dropDups" : false
},
{
"v" : 1,
"key" : {
"created_at_day" : 1
},
"ns" : "sensor_network.reading",
"name" : "created_at_day_1",
"background" : false,
"dropDups" : false
},
{
"v" : 1,
"key" : {
"created_at_hour" : 1
},
"ns" : "sensor_network.reading",
"name" : "created_at_hour_1",
"background" : false,
"dropDups" : false
}
]
> db.reading.find({created_at_year: 2014, created_at_month: 1, created_at_day: 28 }).explain()
{
"cursor" : "BtreeCursor created_at_day_1",
"isMultiKey" : false,
"n" : 15689,
"nscannedObjects" : 15994,
"nscanned" : 15994,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 5,
"nChunkSkips" : 0,
"millis" : 25511,
"indexBounds" : {
"created_at_day" : [
[
28,
28
]
]
},
"server" : "raspberrypi:27017"
}
Update 4 Feb
Okay, so I deleted the indexes, set a new one on created_at, deleted all the records and left it a day to collect new data. I've just run a query for today's data and it took longer (48 seconds):
> db.reading.find({'created_at': {'$gte':ISODate("2014-02-04")}}).explain()
{
"cursor" : "BtreeCursor created_at_1",
"isMultiKey" : false,
"n" : 14189,
"nscannedObjects" : 14189,
"nscanned" : 14189,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 9,
"nChunkSkips" : 0,
"millis" : 48653,
"indexBounds" : {
"created_at" : [
[
ISODate("2014-02-04T00:00:00Z"),
ISODate("292278995-12-2147483314T07:12:56.808Z")
]
]
},
"server" : "raspberrypi:27017"
}
That's with only 16,177 records in the database and only one index. There's around 111MB of free memory, so there shouldn't be an issue with the index fitting in memory. I guess I'm going to have to write this off as the Pi not being powerful enough for this job.