I am a fresh student in computer science and currently we study Java recursion. Unfortunately, the academy only explains the following regarding this topic:
- What recursion means.
- There are 2 types of cases when using a recursive algorithm: base cases and recursive cases and their purpose.
- An example of factorial and Fibonacci implementation using recursion.
Now I got the following exercise:
Two integer numbers will be called "strangers" if their greatest common divisor (aka GTC) is ONLY 1". For example, the numbers 8 and 9 are "strangers" because their GTC is 1. However, 8 and 9 are not "strangers" because their GTC is 2.
Please implement a recursive method which receives an array of integers, and returns "true" if every pair numbers in this array are strangers, and "false" otherwise.
Method signature must be as follows:
public boolean checkGCD(int[] values)For example:
{3, 5, 7, 11} -> method will returns true.
{4, 7, 8, 9} -> method will returns false because 4 and 8 are not strangers.For assistance, you can use the following method for finding GTC (Euclidean algorithm):
private static int gcd(int n, int m){ if (m==0) return n; return gcd(m,n % m); }In addition, the method checkGCD(int[] values) should be overloaded...
Loops cannot be used!
The above can be done very easily with a nested loop, but I must use recursion!
I understand that I need to use an overloaded method which gets the array, lo index and hi index.
So this is what I came up in mind:
@@@@@@
Base case: if there is at least one pair of numbers in the array which are not strangers, method returns false (no need to continue the comparison...).
@@@@@@
Comparison will be done in the following way: lo index points to the 1st cell -> hi index points to the 2nd cell -> comparing -> hi index is incremented by 1 until it reaches the last cell of the array.
Then, lo index is incremented by 1, and then repeating the above.
So bottom line, I should compare the first cell to all consecutive cells, compare the 2nd to all consecutive cells, the 3rd etc...
@@@@@@@@
If all pairs of numbers are strangers, I need something else to stop recursion. Therefore, if all pairs are strangers, it means that lo index and hi index will eventually point to the last cell (cause both lo and hi index has incremented gradually, and they reach the last array cell after all comparisons turned out to be OK i.e strangers).
The following is the overloaded function:
private static boolean checkGCD(int[] values, int lo, int hi)
{
if ( (gcd(values[lo], values[hi]) )!= 1 )
return false;
else if (lo < values.length-1 && hi < values.length-1)
return checkGCD(values, lo, hi+1);
else if (lo < values.length-2 && hi == values.length-1)
return checkGCD (values, lo+1, lo+2);
if (lo == values.length-1 && hi == values.length-1)
return true;
} -> Compiler says "missing return statement"**
The following is the method the exercise requires to have, and it basically just calls the overloaded method which does everything recursively.
public static boolean checkGCD(int[] values)
{
return checkGCD(values, 0, 1);
}
When I try to compile, I get "missing return statement" which points to the close bracket in the overloaded function
But I do use "return" in the overloaded function.
Please clarify how to fix. I am sure after compilation error, the above overloaded function is still not OK.