I have read a csv file with pandas read_csv having 8 columns. Each column may contain int/string/float values. But I want to remove those rows having string values and return a data frame with only numeric values in it. Attaching the csv sample.
I have tried to run this following code:
import pandas as pd
import numpy as np
df = pd.read_csv('new200_with_errors.csv',dtype={'Geo_Level_1' : int,'Geo_Level_2' : int,'Geo_Level_3' : int,'Product_Level_1' : int,'Product_Level_2' : int,'Product_Level_3' : int,'Total_Sale' : float})
print(df)
but I get the following error:
TypeError: unorderable types: NoneType() > int()
I am running with python 3.4.1. Here is the sample csv.
Geo_L_1,Geo_L_2,Geo_L_3,Pro_L_1,Pro_L_2,Pro_L_3,Date,Sale
1, 2, 3, 129, 1, 5193316745, 1/1/2012, 9
1 ,2, 3, 129, 1, 5193316745, 1/1/2013,
1, 2, 3, 129, 1, 5193316745, , 8
1, 2, 3, 129, NA, 5193316745, 1/10/2012, 10
1, 2, 3, 129, 1, 5193316745, 1/10/2013, 4
1, 2, 3, ghj, 1, 5193316745, 1/10/2014, 6
1, 2, 3, 129, 1, 5193316745, 1/11/2012, 4
1, 2, 3, 129, 1, ghgj, 1/11/2013, 2
1, 2, 3, 129, 1, 5193316745, 1/11/2014, 6
1, 2, 3, 129, 1, 5193316745, 1/12/2012, ghgj
1, 2, 3, 129, 1, 5193316745, 1/12/2013, 5