I am trying to visualize a function of 3 parameters over a cube in R^3 to get an idea of the smoothness of the function. An example of this problem is shown in the sample code below
%pylab
from mpl_toolkits.mplot3d import Axes3D
import itertools
x = np.linspace(0,10,50)
y = np.linspace(0,15,50)
z = np.linspace(0,8,50)
points = []
for element in itertools.product(x, y, z):
points.append(element)
def f(vals):
return np.cos(vals[0]) + np.sin(vals[1]) + vals[2]**0.5
fxyz = map(f, points)
xi, yi, zi = zip(*points)
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xi, yi, zi, c=fxyz, alpha=0.5)
plt.show()

The problem with this approach is that the inside of the cube cannot be visualized. Is there a better way to graph a function over some dense subset of R^3?
