I'm using Caffe for classifying non-image data using a quite simple CNN structure. I've had no problems training my network on my HDF5-data with dimensions n x 1 x 156 x 12. However, I'm having difficulties classifying new data.
How do I do a simple forward pass without any preprocessing? My data has been normalized and have correct dimensions for Caffe (it's already been used to train the net). Below is my code and the CNN structure.
EDIT: I've isolated the problem to the function '_Net_forward' in pycaffe.py and found that the issue arises as the self.input dict is empty. Can anyone explain why that is? The set is supposed to be equal to the set coming from the new test data:
if set(kwargs.keys()) != set(self.inputs):
raise Exception('Input blob arguments do not match net inputs.')
My code has changed a bit as I now use the IO methods for converting the data into datum (see below). In that way I've filled the kwargs variable with the correct data.
Even small hints would be greatly appreciated!
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# Make sure that caffe is on the python path:
caffe_root = '' # this file is expected to be run from {caffe_root}
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
import os
import subprocess
import h5py
import shutil
import tempfile
import sklearn
import sklearn.datasets
import sklearn.linear_model
import skimage.io
def LoadFromHDF5(dataset='test_reduced.h5', path='Bjarke/hdf5_classification/data/'):
f = h5py.File(path + dataset, 'r')
dat = f['data'][:]
f.close()
return dat;
def runModelPython():
model_file = 'Bjarke/hdf5_classification/conv_v2_simple.prototxt'
pretrained = 'Bjarke/hdf5_classification/data/train_iter_10000.caffemodel'
test_data = LoadFromHDF5()
net = caffe.Net(model_file, pretrained)
caffe.set_mode_cpu()
caffe.set_phase_test()
user = test_data[0,:,:,:]
datum = caffe.io.array_to_datum(user.astype(np.uint8))
user_dat = caffe.io.datum_to_array(datum)
user_dat = user_dat.astype(np.uint8)
out = net.forward_all(data=np.asarray([user_dat]))
if __name__ == '__main__':
runModelPython()
CNN Prototext
name: "CDR-CNN"
layers {
name: "data"
type: HDF5_DATA
top: "data"
top: "label"
hdf5_data_param {
source: "Bjarke/hdf5_classification/data/train.txt"
batch_size: 10
}
include: { phase: TRAIN }
}
layers {
name: "data"
type: HDF5_DATA
top: "data"
top: "label"
hdf5_data_param {
source: "Bjarke/hdf5_classification/data/test.txt"
batch_size: 10
}
include: { phase: TEST }
}
layers {
name: "feature_conv"
type: CONVOLUTION
bottom: "data"
top: "feature_conv"
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 10
kernel_w: 12
kernel_h: 1
stride_w: 1
stride_h: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "conv1"
type: CONVOLUTION
bottom: "feature_conv"
top: "conv1"
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 14
kernel_w: 1
kernel_h: 4
stride_w: 1
stride_h: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "pool1"
type: POOLING
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_w: 1
kernel_h: 3
stride_w: 1
stride_h: 3
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "pool1"
top: "conv2"
blobs_lr: 1
blobs_lr: 2
convolution_param {
num_output: 120
kernel_w: 1
kernel_h: 5
stride_w: 1
stride_h: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layers {
name: "fc1"
type: INNER_PRODUCT
bottom: "conv2"
top: "fc1"
blobs_lr: 1
blobs_lr: 2
weight_decay: 1
weight_decay: 0
inner_product_param {
num_output: 84
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "fc1"
bottom: "label"
top: "accuracy"
include: { phase: TEST }
}
layers {
name: "loss"
type: SOFTMAX_LOSS
bottom: "fc1"
bottom: "label"
top: "loss"
}