I have a data frame that contains 508383 rows. I am only showing the first 10 row.
0 1 2
0 chr3R 4174822 4174922
1 chr3R 4175400 4175500
2 chr3R 4175466 4175566
3 chr3R 4175521 4175621
4 chr3R 4175603 4175703
5 chr3R 4175619 4175719
6 chr3R 4175692 4175792
7 chr3R 4175889 4175989
8 chr3R 4175966 4176066
9 chr3R 4176044 4176144
I want to iterate through each row and check the value of column #2 of the first row to the value of the next row. I want to check if the difference between these values is less than 5000. If the difference is greater than 5000 then I want to slice the data frame from the first row to the previous row and have this be a subset data frame.
I then want to repeat this process and create a second subset data frame. I've only manage to get this done by using CSV reader in combination with Pandas.
Here is my code:
#!/usr/bin/env python
import pandas as pd
data = pd.read_csv('sort_cov_emb_sg.bed', sep='\t', header=None, index_col=None)
import csv
file = open('sort_cov_emb_sg.bed')
readCSV = csv.reader(file, delimiter="\t")
first_row = readCSV.next()
print first_row
count_1 = 0
while count_1 < 100000:
next_row = readCSV.next()
value_1 = int(next_row[1]) - int(first_row[1])
count_1 = count_1 + 1
if value_1 < 5000:
continue
else:
break
print next_row
print count_1
print value_1
window_1 = data[0:63]
print window_1
first_row = readCSV.next()
print first_row
count_2 = 0
while count_2 < 100000:
next_row = readCSV.next()
value_2 = int(next_row[1]) - int(first_row[1])
count_2 = count_2 + 1
if value_2 < 5000:
continue
else:
break
print next_row
print count_2
print value_2
window_2 = data[0:74]
print window_2
I wanted to know if there is a better way to do this process )without repeating the code every time) and get all the subset data frames I need.
Thanks.
Rodrigo