I have a pandas dataframe column (Data Type) which I want to split into three columns
target_table_df = LoadS_A [['Attribute Name',
'Data Type',
'Primary Key Indicator']]
Example input (target_table_df)
Attribute Name Data Type Primary Key Indicator
0 ACC_LIM DECIMAL(18,4) False
1 ACC_NO NUMBER(11,0) False
2 ACC_OPEN_DT DATE False
3 ACCB DECIMAL(18,4) False
4 ACDB DECIMAL(18,4) False
5 AGRMNT_ID NUMBER(11,0) True
6 BRNCH_NUM NUMBER(11,0) False
7 CLRD_BAL DECIMAL(18,4) False
8 CR_INT_ACRD_GRSS DECIMAL(18,4) False
9 CR_INT_ACRD_NET DECIMAL(18,4) False
I aim to:
- Reassign 'Data Type' to the text preceding the parenthesis
[..if parenthesis exists in 'Data Type']:
- Create new column 'Precision' and assign to first comma separated value
- Create new column 'Scale' and assign to second comma separated value
Intended output would therefore become:
Data Type Precision Scale
0 decimal 18 4
1 number 11 0
2 date
3 decimal 18 4
4 decimal 18 4
5 number 4 0
I have tried in anger to achieve this but i'm new to dataframes....can't work out if I am to iterate over all rows or if there is a way to apply to all values in the dataframe?
Any help much appreciated