Suppose there are parameters in the network I would like to change manually in pycaffe, rather than update automatically by the solver. For example, suppose we would like to penalize dense activations, this can be implemented as an additional loss layer. Across the training process, we would like to change the strength of this penalty by multiplying the loss with a coefficient that evolves in a pre-specified way. What would be a good way to do this in caffe? Is it possible to specify this in the prototxt definition? In the pycaffe interface?
Update: I suppose setting lr_mult and decay_mult to 0 might be a solution, but seems like a clumsy one. Maybe a DummyDataLayer providing the parameters as a blob would be a better option. But there is so little documentation that it's quite a struggle to write for someone new to caffe