Your PERIOD_START_TIME might not be datetime. To make sure that it is.
df['PERIOD_START_TIME'] = pd.to_datetime(df['PERIOD_START_TIME'])
Access the date and time attributes via the dt accessor.
df['date'] = df.PERIOD_START_TIME.dt.date
df['time'] = df.PERIOD_START_TIME.dt.time
print(df)
PERIOD_START_TIME date time
0 2017-01-31 13:00:00 2017-01-31 13:00:00
1 2017-01-31 14:00:00 2017-01-31 14:00:00
2 2017-01-31 15:00:00 2017-01-31 15:00:00
3 2017-01-31 16:00:00 2017-01-31 16:00:00
4 2017-01-31 17:00:00 2017-01-31 17:00:00
5 2017-01-31 18:00:00 2017-01-31 18:00:00
6 2017-01-31 19:00:00 2017-01-31 19:00:00
7 2017-01-31 20:00:00 2017-01-31 20:00:00
8 2017-01-31 21:00:00 2017-01-31 21:00:00
9 2017-01-31 22:00:00 2017-01-31 22:00:00
10 2017-01-31 23:00:00 2017-01-31 23:00:00
11 2017-02-01 00:00:00 2017-02-01 00:00:00
12 2017-02-01 01:00:00 2017-02-01 01:00:00
13 2017-02-01 02:00:00 2017-02-01 02:00:00
14 2017-02-01 03:00:00 2017-02-01 03:00:00
setup
import pandas as pd
from io import StringIO
txt = """PERIOD_START_TIME
01.31.2017 13:00:00
01.31.2017 14:00:00
01.31.2017 15:00:00
01.31.2017 16:00:00
01.31.2017 17:00:00
01.31.2017 18:00:00
01.31.2017 19:00:00
01.31.2017 20:00:00
01.31.2017 21:00:00
01.31.2017 22:00:00
01.31.2017 23:00:00
02.01.2017 00:00:00
02.01.2017 01:00:00
02.01.2017 02:00:00
02.01.2017 03:00:00 """
df = pd.read_csv(StringIO(txt), parse_dates=[0])