My main objective is to be consistent with both my numeric output and my visual output. However, I can't seem to get to them to match.
Here is my setup using python 3.x:
df = pd.DataFrame([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],columns=['Expo'])
Followed by my setup for the bar chart in matplotlib:
x = df['Expo']
N = len(x)
y = range(N)
width = 0.125
plt.bar(x, y, width, color="blue")
fig = plt.gcf();
However, using this snippet code to check and see what the actual numeric counts of both classes are...
print("Class 1: "+str(df['Expo'].value_counts()[1]),"Class 2: "+str(df['Expo'].value_counts()[2]))
I get the below:
Class 1: 85 Class 2: 70
Since I have 155 records in the data frame, numerically this makes sense. Having a single bar in the bar chart be at 155 does not.
I appreciate any help in advance.



