Not the most elegant way, but it should be simple enough.
Consider a vertical slice of with w (the same as the slices you posted in your question). If you sum the white pixels along the rows of the slice, you should get six nice "peaks" corresponding to the six rims of the hats:

However, since the rims are rounded, some vertical slices would be better than others for this sort of estimation.
Therefore, I suggest looking at all slices of width w and counting the peaks for each slice.
Here's a Matlab code that does this
img = imread('https://i.sstatic.net/69FfJ.jpg'); % read the image
bw = img(:,:,1)>128; % convert to binary
w = 75; % width of slice
all_slices = imfilter(single(bw), ones(1,w)/w, 'symmetric')>.5; % compute horizontal sum of all slices using filter
% a peak is a slice with more than 50% "white" pixels
peaks = diff( all_slices, 1, 1 ) > 0; % detect the peaks using vertical diff
count_per_slice = sum( peaks, 1 ); % how many peaks each slice think it sees
Looking at the distribution of the count_per_slice:

You see that although many slices predict the wrong number of hats (between 4 to 9) the majority votes for the correct number 6:
num_hats = mode(count_per_slice); % take the mode of the distribution.
A python code that does the same (assuming bw is a numpy array of shape (h,w) and of dtype bool):
from scipy import signal, stats
import numpy as np
w = 75;
all_slices = signal.convolve2d( bw.astype('f4'), np.ones((1,w),dtype='f4')/float(w), mode='same', boundary='symmetric')>0.5
peaks = np.diff( all_slices, n=1, axis=0 ) > 0
count_per_slice = peaks.sum( axis=0 )
num_hats = stats.mode( count_per_slice )