Following the successful implementation of the index manipulation in my previous question (see link below) where I wanted the columns to be sorted alphanumerically.
I'd like to arrange the data frame with an additional/secondary index - customer category and sort the customer names within each category alphabetically.
I was thinking of creating a dictionary to map each customer name to a specific category and then sort by alphabetically. Not sure if that works or how to implement this.
- i'm looking to sort alphabetically first for
two_idxand then byname
This is the current code:
df = df.pivot_table(index=['name'], columns=['Duration'],
aggfunc={'sum': np.sum}, fill_value=0)
# Sort Index Values - Duration
c = df_with_col_arg.columns.levels[1]
c = sorted(ns.natsorted(c), key=lambda x: not x.isdigit())
# Reindex Maturity values after Sorting
df_ = df.reindex_axis(pd.MultiIndex.from_product([df.columns.levels[0], c]), axis=1)
map_dict = {
'Invoice A': 'A1. Retail',
'Invoice B': 'A1. Retail',
'Invoice Z': 'A1. Retail',
'Invoice C': 'C1. Plastics',
'Invoice F': 'C1. Plastics',
'Invoice D': 'C2. Electronics',
'Invoice J': 'C2. Electronics'
}
# New Column - later to be converted to a secondary index
df['two_idx'] = df.index.to_series().map(map_dict)
df = df.sort_values(['two_idx'], ascending=[False]).set_index(['two_idx', 'name'])
Output of df.columns:
MultiIndex(levels=[[u'sum', u'two_idx'], [u'0', u'1', u'10', u'11', u'2', u'2Y', u'3', u'3Y', u'4', u'4Y', u'5', u'5Y', u'6', u'7', u'8', u'9', u'9Y', u'']],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 1, 4, 6, 8, 10, 2, 3, 5, 7, 9, 11, 16, 17]])
The output I'm looking for is:
Duration 2 2Y 3 3Y
two_idx name
A1. Retail Invoice A 25.50 0.00 0.00 20.00
A1. Retail Invoice B 50.00 25.00 -10.50 0.00
C1. Plastics Invoice C 125.00 0.00 11.20 0.50
C2. Electronics Invoice D 0.00 15.00 0.00 80.10
[Data Manipulation - Sort Index when values are Alphanumeric