1

Hi there, I execute the following in my Anaconda prompt:(tensorflow) C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection> python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.config

I am training the model on a custom dtataset I cerated tagging 'column' objects. I've followed tutorials over and over to make sure all my steps were correct but I seem to still hit the following error, any clue on how to fix please would be very much appreciated?:

WARNING:tensorflow:From C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\trainer.py:210: create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.create_global_step
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
Traceback (most recent call last):
  File "train.py", line 163, in <module>
    tf.app.run()
  File "C:\Users\nicho\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\platform\app.py", line 124, in run
    _sys.exit(main(argv))
  File "train.py", line 159, in main
    worker_job_name, is_chief, FLAGS.train_dir)
  File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\trainer.py", line 228, in train
    clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
  File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\slim\deployment\model_deploy.py", line 193, in create_clones
    outputs = model_fn(*args, **kwargs)
  File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\trainer.py", line 167, in _create_losses
    losses_dict = detection_model.loss(prediction_dict)
  File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\meta_architectures\ssd_meta_arch.py", line 474, in loss
    location_losses, cls_losses, prediction_dict, match_list)
  File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\meta_architectures\ssd_meta_arch.py", line 640, in _apply_hard_mining
    match_list=match_list)
  File "C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection\core\losses.py", line 515, in __call__
    location_losses = tf.unstack(location_losses)
  File "C:\Users\nicho\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1054, in unstack
    (axis, -value_shape.ndims, value_shape.ndims))
ValueError: axis = 0 not in [0, 0)

(tensorflow) C:\Users\nicho\Documents\01_Machine_Learning\00_Lynda.com\Ex_Files_TensorFlow\models\research\object_detection>python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_pets.confi

g

2 Answers 2

1

problem solved. In your pipeline.config make

loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}

to

loss {
classification_loss {
weighted_sigmoid {
anchorwise_output: true #add this
}
}
localization_loss {
weighted_smooth_l1 {
anchorwise_output: true #add this
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}

enjoy...

Sign up to request clarification or add additional context in comments.

Comments

0

Which model do you use? You might try using a different network for training. I had the same problem when used ssd_mobilenet_v1_coco and ssd_mobilenet_v1_coco.config. Switched to ssd_mobilenet_v1_pets.config, which has additional parameter anchorwise_output, and it started to train.

1 Comment

Hi, thanks. I actually switched from mobilenet to faster_rcnn_inception and it worked fine!

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.