I'm trying to write a Haskell program that calculates multiples. Basically, when given two integers a and b, I want to find how many integers 1 ≤ bi ≤ b are multiple of any integer 2 ≤ ai ≤ a. For example, if a = 3 and b = 30, I want to know how many integers in the range of 1-30 are a multiple of 2 or 3; there are 20 such integers: 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30.
I have a C program that does this. I'm trying to get this translated into Haskell, but part of the difficulty is getting around the loops that I've used since Haskell doesn't use loops. I appreciate any and all help in translating this!
My C program for reference (sorry if formatting is off):
#define PRIME_RANGE 130
#define PRIME_CNT 32
#define UPPER_LIMIT (1000000000000000ull) //10^15
#define MAX_BASE_MULTIPLES_COUNT 25000000
typedef struct
{
char primeFactorFlag;
long long multiple;
}multipleInfo;
unsigned char primeFlag[PRIME_RANGE + 1];
int primes[PRIME_CNT];
int primeCnt = 0;
int maxPrimeStart[PRIME_CNT];
multipleInfo baseMultiples[MAX_BASE_MULTIPLES_COUNT];
multipleInfo mergedMultiples[MAX_BASE_MULTIPLES_COUNT];
int baseMultiplesCount, mergedMultiplesCount;
void findOddMultiples(int a, long long b, long long *count);
void generateBaseMultiples(void);
void mergeLists(multipleInfo listSource[], int countS, multipleInfo
listDest[], int *countD);
void sieve(void);
int main(void)
{
int i, j, a, n, startInd, endInd;
long long b, multiples;
//Generate primes
sieve();
primes[primeCnt] = PRIME_RANGE + 1;
generateBaseMultiples();
baseMultiples[baseMultiplesCount].multiple = UPPER_LIMIT + 1;
//Input and Output
scanf("%d", &n);
for(i = 1; i <= n; i++)
{
scanf("%d%lld", &a, &b);
//If b <= a, all are multiple except 1
if(b <= a)
printf("%lld\n",b-1);
else
{
//Add all even multiples
multiples = b / 2;
//Add all odd multiples
findOddMultiples(a, b, &multiples);-
printf("%lld\n", multiples);
}
}
return 0;
}
void findOddMultiples(int a, long long b, long long *count)
{
int i, k;
long long currentNum;
for(k = 1; k < primeCnt && primes[k] <= a; k++)
{
for(i = maxPrimeStart[k]; i < maxPrimeStart[k + 1] &&
baseMultiples[i].multiple <= b; i++)
{
currentNum = b/baseMultiples[i].multiple;
currentNum = (currentNum + 1) >> 1; // remove even multiples
if(baseMultiples[i].primeFactorFlag) //odd number of factors
(*count) += currentNum;
else
(*count) -= currentNum;
}
}
}
void addTheMultiple(long long value, int primeFactorFlag)
{
baseMultiples[baseMultiplesCount].multiple = value;
baseMultiples[baseMultiplesCount].primeFactorFlag = primeFactorFlag;
baseMultiplesCount++;
}
void generateBaseMultiples(void)
{
int i, j, t, prevCount;
long long curValue;
addTheMultiple(3, 1);
mergedMultiples[0] = baseMultiples[0];
mergedMultiplesCount = 1;
maxPrimeStart[1] = 0;
prevCount = mergedMultiplesCount;
for(i = 2; i < primeCnt; i++)
{
maxPrimeStart[i] = baseMultiplesCount;
addTheMultiple(primes[i], 1);
for(j = 0; j < prevCount; j++)
{
curValue = mergedMultiples[j].multiple * primes[i];
if(curValue > UPPER_LIMIT)
break;
addTheMultiple(curValue, 1 - mergedMultiples[j].primeFactorFlag);
}
if(i < primeCnt - 1)
mergeLists(&baseMultiples[prevCount], baseMultiplesCount - prevCount, mergedMultiples, &mergedMultiplesCount);
prevCount = mergedMultiplesCount;
}
maxPrimeStart[primeCnt] = baseMultiplesCount;
}
void mergeLists(multipleInfo listSource[], int countS, multipleInfo listDest[], int *countD)
{
int limit = countS + *countD;
int i1, i2, j, k;
//Copy one list in unused safe memory
for(j = limit - 1, k = *countD - 1; k >= 0; j--, k--)
listDest[j] = listDest[k];
//Merge the lists
for(i1 = 0, i2 = countS, k = 0; i1 < countS && i2 < limit; k++)
{
if(listSource[i1].multiple <= listDest[i2].multiple)
listDest[k] = listSource[i1++];
else
listDest[k] = listDest[i2++];
}
while(i1 < countS)
listDest[k++] = listSource[i1++];
while(i2 < limit)
listDest[k++] = listDest[i2++];
*countD = k;
}
void sieve(void)
{
int i, j, root = sqrt(PRIME_RANGE);
primes[primeCnt++] = 2;
for(i = 3; i <= PRIME_RANGE; i+= 2)
{
if(!primeFlag[i])
{
primes[primeCnt++] = i;
if(root >= i)
{
for(j = i * i; j <= PRIME_RANGE; j += i << 1)
primeFlag[j] = 1;
}
}
}
}