16

Looking at pyspark, I see translate and regexp_replace to help me a single characters that exists in a dataframe column.

I was wondering if there is a way to supply multiple strings in the regexp_replace or translate so that it would parse them and replace them with something else.

Use case: remove all $, #, and comma(,) in a column A

0

2 Answers 2

39

You can use pyspark.sql.functions.translate() to make multiple replacements. Pass in a string of letters to replace and another string of equal length which represents the replacement values.

For example, let's say you had the following DataFrame:

import pyspark.sql.functions as f
df = sqlCtx.createDataFrame([("$100,00",),("#foobar",),("foo, bar, #, and $",)], ["A"])
df.show()
#+------------------+
#|                 A|
#+------------------+
#|           $100,00|
#|           #foobar|
#|foo, bar, #, and $|
#+------------------+

and wanted to replace ('$', '#', ',') with ('X', 'Y', 'Z'). Simply use translate like:

df.select("A", f.translate(f.col("A"), "$#,", "XYZ").alias("replaced")).show()
#+------------------+------------------+
#|                 A|          replaced|
#+------------------+------------------+
#|           $100,00|           X100Z00|
#|           #foobar|           Yfoobar|
#|foo, bar, #, and $|fooZ barZ YZ and X|
#+------------------+------------------+

If instead you wanted to remove all instances of ('$', '#', ','), you could do this with pyspark.sql.functions.regexp_replace().

df.select("A", f.regexp_replace(f.col("A"), "[\$#,]", "").alias("replaced")).show()
#+------------------+-------------+
#|                 A|     replaced|
#+------------------+-------------+
#|           $100,00|        10000|
#|           #foobar|       foobar|
#|foo, bar, #, and $|foo bar  and |
#+------------------+-------------+

The pattern "[\$#,]" means match any of the characters inside the brackets. The $ has to be escaped because it has a special meaning in regex.

Sign up to request clarification or add additional context in comments.

2 Comments

For removing all instances, you can also use translate. Switching to regex_replace is not needed. I believe the following would do the job df.select("A", f.translate(f.col("A"), "$#,", "").alias("replaced")).show()
@Sheldore, your solution does not work properly. It replaces characters with space
1

If someone need to do this in scala you can do this as below code:

val df = Seq(("Test$",19),("$#,",23),("Y#a",20),("ZZZ,,",21)).toDF("Name","age")
import org.apache.spark.sql.functions._
val df1 = df.withColumn("NewName",translate($"Name","$#,","xyz"))
display(df1)

You can see the output as below: enter image description here

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.